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Abstract 

The MAARC project developed a sound framework for algorithmic configurable com- 

puting and for exploiting this technology for embedded signal and image processing appli- 

cations. The project was executed by the MAARC research group at USC in collaboration 

with the ReaCT-ILP lab at New York University. The USC efforts developed fundamen- 

tal configurable computing models and performance metrics to evaluate the scalability of 

configurable hardware. The developed models and the performance metrics were utilized 

to analyze dynamic reconfiguration and design model based algorithm mapping techniques 

for signal processing applications. Mapping techniques were developed to identify the core 

computational kernels of signal processing applications and map them onto configurable 

hardware. The mapping techniques are efficient and yield significant performance speed- 

ups and logic utilization. An interpretive simulation framework was proposed to analyze 

and visualize dynamic reconfiguration and the proposed mapping techniques. A proto- 

type of the framework, Dynamically Reconfigurable Systems Interpretive Simulation and 

Visualization Environment (DRIVE) was developed and demonstrated. As part of the col- 

laborative effort the NYU group designed a model based compiler framework and compiler 

optimization technologies targeting reconfigurable platforms. This report summarizes the 

accomplishments of these efforts and the details are provided in the manuscripts submitted 

as part of the report. The first part of the report describes the accomplishments by the USC 

MAARC group and the second part describes the accomplishments of the NYU ReaCT-ILP 

group. 



Part I 

USC Efforts 

1    Summary of Accomplishments 

1.1    Models for Configurable Computing 

One major problem in using FPGAs to speed-up a computation is the design process. 

The "standard CAD approach" used for digital design is typically employed. The required 

functionality is specified at a high level of abstraction via an HDL or a schematic. FPGA 

libraries specific to a given device (e.g. Xilinx, Altera, etc.) and time consuming placement 

and routing steps are required to perform the logic mapping. This approach of logic synthesis 

as opposed to algorithm synthesis allows the user to specify the design using a behavioral 

model. But this abstraction is achieved at the expense of performance. The semantics and 

nature of the algorithm are lost in the mapping phases. 

The model based mapping environment takes into account the capabilities and limita- 

tions of current as well as projected hardware technologies. In this effort parameterized 

models for algorithm design and analysis have been developed which possess the following 

characteristics: 

• Cost models for analysis of reconfigurable architectures. 

• Techniques for partitioning and placement of designs exploiting algorithm and input 

structure. 

• Cost analysis incorporating the cost of reconfiguration and partial and dynamic re- 

configurability. 

• Impact of off-chip communication in designing reconfigurable computing solutions. 

• Tradeoffs between reconfigurability and redundancy of hardware. 

A Configurable Linear Array model of coarse grained architectures has been developed. 

The model consists of identical powerful PEs, where the datapaths as well as the functional- 

ity of the PEs can be dynamically configured. I/O is performed only at the boundaries which 

limits the required memory bandwidth. The model has been utilized to map homogeneous 

computations onto coarse grained architectures [9]. 

Hybrid System Architecture Model (HySAM), a parameterized model of reconfigurable 

architectures has been developed. The model encompasses systems with configurable logic 

attached to a traditional microprocessor.  HySAM is a compilation model and facilitates 



development of architecture independent mapping algorithms. The model has been utilized 

to develop mapping algorithms for various problems [1, 2, 3]. 

1.2     Performance Metrics for Evaluating Configurable Systems 

A configurable computing solution can be based on generic implementation of the problem 

in a HDL. But for efficient designs, the nature of the algorithm and the specific input have 

to be exploited. In designing such configurations, the mapping from a specific instance to 

actual configuration plays an important role. A configurable computing solution has three 

components: 

1. Design compilation to generate the configurations. 

2. Configuring the logic on the device. 

3. Execution of the computation tasks on the configured hardware. 

The performance of the configurable computing solution can be measured by the total 

time: 

T = Td + Tc + Te 

Td, Tc and Te correspond to the three steps mentioned above. Td is the design time, Tc is 

the configuration time (including the reconfiguration time), and Te is the actual execution 

time on configurable logic. 

The design time, T<*, is the time needed to map a description of the design in a HDL to 

low level netlist format by using various high level synthesis tools and technology mapping 

tools. In current configurable computing designs the design time, Td, varies anywhere from 

hours to weeks of computation time on a traditional workstation. The configuration time, 

Tc, varies from milli-seconds to seconds. The execution time, Te, varies from nano-seconds 

to milli-seconds for typical tasks. The execution time in hardware (once the hardware is 

configured) is usually much lower than that in software because of hardware efficiency. To 

obtain high performance, techniques are being developed to exploit the structure in the 

input instance. In such cases, the configurations are generated for each input instance. 

The total time to compute a solution has to include the time elapsed from the time the 

input data is submitted to the time all the the outputs are obtained. This total latency 

is the metric used in traditional performance measures. But, existing framework takes 

into account only the actual execution time, Te, of the developed design in evaluating the 

performance of the design.  It is incorrect to compare only the execution time, especially 



when the design compilation time is many orders of magnitude greater than the execution 

time (typical designs take hours to weeks on workstations to compile). In this effort the 

performance comparison was based on the total time elapsed rather than just the execution 

time. 

1.3    Algorithmic Techniques 

1.3.1 Algorithm Specialization 

Configurable architectures have architectural characteristics different from traditional com- 

puting architectures. It is necessary to explore the space of algorithms for a given problem 

to map onto configurable architectures. This effort proposed a fast parallel implementation 

of Discrete Fourier Transform (DFT) using FPGAs. The design is based on the Arithmetic 

Fourier Transform (AFT) using zero-order interpolation. For a given problem of size TV, 

AFT requires only 0(N2) additions and O(N) real multiplications with constant factors. 

The design employs 2p + 1 PEs (1 < p < N), O(N) memory and fixed I/O with the host. 

It is scalable over p (1 < p < N) and can solve larger problems with the same hardware by 

increasing the memory. All the PEs have fixed architecture. The proposed implementation 

is faster than most standard DSP designs for FFT. It also outperforms other FPGA-based 

implementations for FFT, in terms of speed and adaptability to larger problems [8]. 

1.3.2 Mapping onto Coarse Grained Configurable Architectures 

Some configurable architectures address the problem of reconfiguration cost by using coarse 

grain reconfigurable logic blocks. This reduces the flexibility but also significantly decreases 

the reconfiguration cost. This effort developed an efficient design for 2D-DCT on dynami- 

cally configurable coarse grained architectures. A novel technique for deriving computation 

structures for two dimensional homogeneous computations was developed. In this technique, 

the speed of the data channels is dynamically controlled to perform the desired computation 

as the data flows along the array. This results in a space efficient design for 2D-DCT that 

fully utilizes the available computational resources. Compared with the state-of-the-art 

designs, the amount of local memory required is reduced by 33% while achieving the same 

high throughput [9]. 

1.3.3 Mapping Computations onto Hybrid Reconfigurable Architectures 

Loop statements in traditional programs consist of regular, repetitive computations which 

are the most likely candidates for performance enhancement using configurable hardware. 



This effort developed a formal methodology for mapping loops onto reconfigurable archi- 

tectures. The HySAM parameterized abstract model of reconfigurable architectures devel- 

oped in this effort (see Section 1.1) is used to define and solve the problem of mapping 

loop statements onto reconfigurable architectures. A polynomial time algorithm was devel- 

oped to compute the optimal sequence of configurations for one important variant of the 

problem [2]. These techniques were also utilized to develop algorithms for mapping loop 

computations onto multi-context devices [4]. 

1.3.4    Dynamic Precision Computations 

Reconfigurable architectures promise significant performance benefits by customizing the 

configurations to suit the computations. Variable precision for computations is one impor- 

tant method of customization for which reconfigurable architectures are well suited. This 

effort developed a formal methodology to manage the variable precision computations. For 

managing dynamic precision in loop computations, intelligent choices on the use of appro- 

priate modules from the available set of modules with different precision need to be made. 

These configurations then have to be scheduled to achieve optimal execution schedule. An 

optimal schedule is based on the metrics defined in Section 1.2. Exploiting dynamic preci- 

sion using the proposed Dynamic Precision Management Algorithm (DPMA) resulted in a 

33% reduction in the computation of a multiplication operation on Xilinx FPGA architec- 

ture [3] (see Table 1). 

Algorithm Execution Reconfiguration Total 
Time (ns) Time (ns) (ns) 

Standard 655360 20480 675840 
Static 532480 17920 550400 

Greedy 468010 56320 524330 
DPMA 471160 33280 504440 

DPMA-run 409600 15360 424960 

Table 1: Execution times using various approaches 

1.3.5    String Matching and Genetic Programming 

An efficient design for string matching on multi-context FPGAs was derived. A novel 

technique for deriving data-dependent configurations was demonstrated. Based on this, 

speedups of the order of 106 over the conventional CAD tools design flow were obtained 



(including both the mapping time and the execution time on hardware) [11]. The speed-up 

obtained using the multi-context FPGA is illustrated in Table 2. 

Approach 

Multicontext FPGA 
CAD tool mapping 
Software mapping 
Sun Ultra 1 

Td + Tc + Te 

n = 104 

1.8 ms 
76.0 s 

21.8 ms 
30 ms 

10a 

18.3 ms 
76.0 s 

39.3 ms 
80 ms 

10b 

183.1 ms 
76.2 s 

204.1 ms 
680 ms 

Speedup 
n= 104 

1.0 
«10b 

12.1 
16.6 

n 10b 

1.0 
104 

2.1 
4.4 

Table 2: Speedups for string matching different string sizes, n 

n 10b 

1.0 
10d 

1.1 
3.7 

The solution to string matching was extended to the area of genetic programming (GP). 

A fast, compact representation of the tree structures in FPGA logic was developed which 

can be evolved as well as executed without external intervention. The tree representation 

permits execution of all tree nodes in a parallel, pipelined fashion. Furthermore, the com- 

pact layout enables multiple trees to execute concurrently, dramatically speeding up the 

fitness evaluation phase. Compared with software implementations, a speedup of 19 for 

an arithmetic intensive problem and a speedup of almost three orders of magnitude for a 

logic operation intensive problem were achieved by implementations on a XC6264 FPGA 

device [10]. 

1.3.6     Instance-dependent Mapping Techniques 

Configurable architectures can achieve performance improvement compared to ASICs by 

exploiting the structure in the algorithm and the input. Developing designs based on 

the structure of the input is Instance-dependent mapping. Mapping techniques for such an 

approach were developed and utilized in mapping graph problems to configurable hardware. 

High-level designs are synthesized for graph problems and adapted to the input graph 

instance at run-time. The proposed approach leads to reconfigurable solutions with superior 

time performance. The time performance metric includes both the mapping time and the 

execution time as defined in Section 1.2. For example, in the case of the single-source 

shortest path problem, the estimated run-time speed-up is 106 compared with the state-of- 

the-art. In comparison with software implementations, the estimated run-time speed-up is 

asymptotically 3.75 and can be improved by further optimization of the hardware design or 

improvement of the configuration time [7] (see Table 3). 



Problem Size Clock Rate Execution Time Mapping Time Speed-up 
veticesx edges Current Proposed Current Proposed Current Proposed 

16 x 64 1.79 15 8.94 21.42 4 hours 22 msec 6.5 x 106 

64 x 256 1.14 15 56.14 79.02 4 hours 82 msec 1.7 x 106 

128 x 515 0.78 15 164.10 199.72 8 hours 161 msec 1.8 x 106 

256 x 1140 0.34 15 752.94 493.17 16 hours 319 msec 1.8 x 106 

Table 3: Performance comparison with the state-of-the-art approach 

1.3.7    Model-based ATR on Configurable Hardware 

Model-based ATR uses geometric hashing as a technique for object recognition in occluded 

scenes. In this effort a design technique for parallelizing geometric hashing on an FPGA- 

based platform was developed. The hash table used in this approach is first transformed 

into a bit-level representation. By regularizing the data flow and exploiting bit-level par- 

allelism in hardware, the proposed design achieves high performance. Using the proposed 

approach, given a scene consisting of 256 feature points, a probe can be performed in 1.65 

milliseconds on an FPGA-based platform having 32 Xilinx 4062s. In earlier implementa- 

tions, the same probe operation was performed in 240 milliseconds on a 32K-node CM2 and 

in 382 milliseconds on a 32-node CM5. Also, the same operation takes 40 milliseconds on 

a 32-node IBM SP-2. By parameterizing the application and the device characteristics, an 

area-time efficient design based on these parameters has been derived. Furthermore, the 

proposed approach can be applied to many geometric hashing methods and is portable to 

other FPGA devices [6]. 

1.3.8     Mapping Irregular Applications onto Configurable Hardware 

Most intermediate and high-level vision tasks manipulate symbolic data. A kernel operation 

in these vision tasks is to search symbolic data satisfying certain geometric constraints. 

Such operations are data-dependent and their memory access patterns are irregular. In this 

effort a fast parallel design for symbolic search operations using configurable hardware has 

been developed. The symbolic data is manipulated using a pointer array and a bit-level 

index array. Depending on the input data, a corresponding search window is calculated and 

symbolic search operations are performed in parallel. Performance estimates using 16 Xilinx 

XC6216s and memory modules are very promising. Given 3519 line segments (extracted 

from an 1024 X 1024 pixel image), the operation can be performed in 1.11 milliseconds on an 

FPGA-based platform. On a Sun UltraSPARC Model 140, the same operation implemented 



using C takes 690 milliseconds [5]. 

1.4    DRIVE Software 

Current simulation tools for reconfigurable architectures are based on existing CAD design 

flow and perform mapping of designs to low level hardware for simulation. Furthermore, 

there are very few tools which provide any ability to study the dynamic behavior of reconfig- 

urable hardware. Most of the existing simulation environments are based on simulation of 

High-level Description Language(HDL) or schematic designs that implement an application. 

As part of this effort, a novel interpretive simulation and visualization environment 

based on modeling and module level mapping approach was developed. The Dynamically 

Reconfigurable systems Interpretive simulation and Visualization Environment (DRIVE) 

can be utilized as a vehicle to study the system and application design space and perfor- 

mance analysis. Reconfigurable hardware is characterized by using a high level parame- 

terized model. Applications are analyzed to develop an abstract application task model. 

Interpretive simulation measures the performance of the abstract application tasks on the 

parameterized abstract system model. This is in contrast to simulating the exact behavior 

of the hardware by using HDL models of the hardware devices. 

The DRIVE framework can be used to perform interactive analysis of the architec- 

ture and design parameter space. Performance characteristics such as total execution time, 

data access bandwidth characteristics and resource utilization can be studied using the 

DRIVE framework. The simulation effort and time are reduced and systems and designs 

can be explored without time consuming low level implementations. The proposed approach 

reduces the semantic gap between the application and the hardware and facilitates the per- 

formance analysis of reconfigurable hardware. This approach also captures the simulation 

and visualization of dynamically reconfigurable architectures. The HySAM model (see Sec- 

tion 1.1) is currently utilized by the framework to map applications to a system model. The 

proposed approach can be utilized to analyze reconfigurable architectures and application 

performance and facilitate adoption of such architectures by a larger spectrum of users. 
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Abstract 

Configurable computing has recently gained much attention with the promise of delivering an 
order of magnitude performance improvement over general purpose processors. In this paper 
we contrast the abstract models of reconfigurable architectures and actual hardware available 
for configurable computing systems. 

There is a wealth of ideas related to abstract models of reconfigurable architectures and 
fast parallel algorithms which exploit the reconfiguration potential in non-trivial ways. We 
summarize these abstract models and illustrate the power of these models using several ex- 
ample algorithms. We identify the practical problems in implementing these models in VLSI 
and describe some prototype implementations. Commercial FPGA devices which are be- 
ing touted as the solution for building configurable computing systems are also examined. 
The MAARC2 project at USC endeavors to bridge this gap between the abstract and the real 
worlds. 

1This work was supported by DARPA under contract DABT63-96-C-0049 monitored by Fort Hauchuca. 
2Models, Algorithms and Architectures for Reconfigurable Computing, http://maarc.usc.edu 



1    Introduction 

Configurable computing has recently gained much attention with the promise of delivering an 
order of magnitude performance improvement over general purpose processors. The paradigm 
of computing in space, i.e., laying out a series of computations on several functional units, as 
opposed to computing in time, i.e., a series of computations executed in sequence on a single 
functional unit, is being actively explored. There are several directions in which research is 
being carried out to realize the potential of configurable computing. 

The idea of a VLSI array of processors overlaid with a reconfigurable bus system and 
an abstract model based on this architecture was proposed in [23]. Several abstract mod- 
els of reconfigurable architectures and fast parallel algorithms for many problems have been 
described in the literature. These models include the bus automaton [30], content address- 
able array parallel processor (CAAPP) [33], polymorphic processor array (PPA) [21], among 
others. Efficient algorithms for fundamental data movement operations [23, 24], sorting [2, 
11, 27, 28], arithmetic [15, 29], graph problems [24], image processing [14, 16] and com- 
putational geometry [12] have been developed on reconfigurable meshes. There have been 
several research prototype implementations of reconfigurable architectures which are related 
to the abstract models. Such architectures include the GCN [33], YUPPIE [22], CLIP [10], 
PADDI [7], ABACUS [5], DPGA [8]. 

Currently the architectures which are being utilized to design reconfigurable systems 
have their root in Field Programmable Gate Array (FPGA). FPGAs consist of a matrix of 
fine grain computational elements, usually implemented using lookup tables, with a hierar- 
chy of programmable interconnect. Traditionally, FPGAs have been used for logic design 
and hardware emulation. Their suitability as computing engines for reconfigurable architec- 
tures is being explored in SPLASH [6], DEC PeRLe [3], Teramac [1], among others. But 
FPGA architectures have been primarily designed to emulate random logic without frequent 
reconfiguration. Also, on-chip memory capacities are too small, reconfiguration times are 
relatively long (several milliseconds) and partial reconfiguration is difficult. 

The advent of static RAM based FPGA devices has given rise to new opportunities in 
reconfigurable computing area. These devices provide features which allow changing the de- 
vice configuration on the fly. But reconfiguration cost is still the prohibitive factor in using 
them for configurable computing. The other major factor is the lack of software tools which 
allow synthesis of applications exploiting dynamic reconfiguration. Research is also being 
carried out in designing coarser grain architectures which incorporate reconfigurable features 
such as MATRIX [25], BRASS Garp [36], RaPiD [9], CMU CVH [37], COLT [4]. 

This paper looks at the two extremes of the configurable computing world, the abstract 
models and actual devices. Though the abstract models have been shown to be very pow- 
erful, they are difficult to realize in VLSI. There have been several research prototypes of 
devices that show promise of implementing reconfigurability. But configurable computing 
cannot deliver the promise until commercial devices strive to deliver the reconfiguration po- 
tential possible with current VLSI technology. 

In Section 2 we describe and characterize several variants of the reconfigurable mesh 
model. In Section 3 we illustrate the power of reconfiguration by describing algorithms for 
EXOR, Addition, Sorting, Prefix operations and Component labeling. We examine the tech- 
nical issues in implementing these models and give brief descriptions of several implemen- 
tations in Section 4. Some commercial devices which look promising for designing config- 
urable systems are also explored in this section. Concluding remarks are made in Section 5. 



2   Reconfigurable Meshes 

A reconfigurable-bus architecture consists of a multi-dimensional array of processing ele- 
ments (PEs) connected to a bus through a fixed number of I/O ports. This bus architecture 
is capable, on a per instruction basis, of configuring a topology that contributes to solving the 
problem at hand. Bus reconfiguration is achieved by locally configuring the switches within 
each PE. Different shapes of buses such as rows, columns, diagonals, zig-zag, and staircase 
can be formed by configuring the switches/ports. 

A two dimensional processor array with a reconfigurable-bus system of size MN con- 
sisting of identical processors connected as a M x N rectangular mesh system is called a 
reconfigurable mesh. An example of a 4 x 4 reconfigurable mesh is shown in Figure 1. A set 
of four I/O ports labeled N, E, W and S, connect each PE to its four neighbors to the north, 
east, west and south, respectively. Each PE has locally controllable switches which config- 
ure the connection patterns between the four I/O ports. The switches allow the broadcast bus 
to be divided into sub-buses, providing smaller reconfigurable meshes. The bus and all I/O 
ports are assumed to be m-bit wide. The connection patterns are represented as {<7i,<72>—}» 
where each of gi represents a group of switches connected together. For example {NS,E,W} 
represents the connection pattern with N and S connected and E and W unconnected. 

Figure 1: Reconfigurable Mesh. 

The basic computational unit of the reconfigurable mesh is the Processing element (PE) 
which consists of a switch, local storage and an ALU (Fig. 1). In a unit time, aPE can perform: 

1. Setting up of a connection pattern. 

2. Read from or write onto a bus or local storage. 

3. Logical or arithmetic operations on local data. 

Various models of reconfigurable meshes have been proposed in the literature. Most of 
these models are synchronous in nature and permit unconditional global switch setting in ad- 
dition to local switch control. Unconditional global switch setting is performed by the broad- 
cast of a global instruction from a central controller. Reconfigurable mesh models can be 
characterized by the following parameters: 



Width It refers to the data width of the PE. The two classes of models which have 
been proposed are bit and word models. The main difference is the width of the input 
operands of the PE. Also, log n bits (where n is the size of the reconfigurable mesh) 
need to be accessed when the processor needs to know its position before setting its 
configuration. Note that the Width parameter is not directly related to the bus width of 
the reconfigurable mesh. 

Delay One critical factor in the analysis of reconfigurable algorithms is the time needed 
to propagate a signal. Some models assume this to be a unit-time operation no matter 
how far the signal has to travel, while other models assume this to be a function of the 
number of processors. Time analyses which assume constant time are called unit-delay 
models and logarithmic time are called logarithmic-delay models. 

Bus Access Each PE connects to the bus through its ports and will either read or write to 
it. Similar to shared memory machines the models can be classified as CRCW, CREW, 
ERCW, and EREW based on how the bus is accessed. The most common models are 
the ERCW models but the CRCW models have also been extensively studied. The 
CRCW models typically assume that a wired-or operation is performed on a concur- 
rent write by multiple PEs onto the bus. 

Connection Patterns Each PE can set the connection between its four ports based on 
local data or global instruction. There are a total of 15 different connection patterns 
possible. Different models differ in the number of connection patterns(a subset of 15) 
which they allow. These models can also be classified based on whether they allow 
cross-over of the port connections. The models which allow cross-over of connec- 
tions(such as N-S and E-W) have been shown to be more powerful than the non-cross- 
over models. 

2.1   Various Models 

Since the introduction of the reconfigurable mesh [23], several models have appeared in the 
literature. Following variations of the models have been studied extensively and efficient al- 
gorithms have been developed for several problems: 

• PARBS The most general and the most powerful is the PARBS model [32]. In this 
model no restriction is placed on the allowed connections among the 4 I/O ports in each 
PE. Thus, all 15 connection patterns are possible and algorithms for a variety of appli- 
cations have been developed on this model [11, 14, 29, 32]. 

• RMESH This consists of two-dimensional mesh of size nxn, with each PE connected 
to a broadcast bus [23]. This bus, like the mesh, is also constructed as an n x n grid, 
where PEs are located at the intersection of the grid lines. Further each bus link between 
adjacent PEs has a switch embedded in it, where the two PEs at either end of the link 
can control the switch. When all the switches are closed, all the n2 PEs are connected 
together. If all the PEs disconnect the switches to the north, then we obtain row buses. 
Similarly column buses can be obtained. The connection patterns allowed in RMESH 
are shown in Figure 2. 

• MRN/LRN The Reconfigurable Network (RN) [2] is a general model in which no re- 
striction is placed on the bus segments that connect the PE or on the placement of the 
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Figure 2: Connection patterns allowed in RMESH. 

PEs. I.e. PEs may not lie at grid points and a bus segment may join an arbitrary pair of 
PEs. Variants of this model under the mesh restriction are the MRN and LRN. Con- 
nection patterns allowed in MRN are shown in Figure 3. In LRN a bus may consist of 
any connected path of edges. However, only linear buses are composed, so that a bus 
component is attached to at most one other bus component at each end. 
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Figure 3: Connection patterns allowed in MRN. 

• Polymorphic Torus A polymorphic torus architecture [ 18,22] is identical to the PARBS 
architecture except that the rows and columns of the underlying mesh wrap around. 

Jang et. al. proposed a Bit Model [ 13] of reconfigurable mesh which can simulate (asymp- 
totically) most of the word based models of the reconfigurable mesh in the same amount of 



time using the same VLSI area. The basic PE in the Bit Model consists of a switch, local 
storage and a 1-bit ALU. The switch consists of six bit-level switches which can be closed 
or opened using local information within the PEs. The switch can realize any of the possible 
15 connection patterns among its 4 I/O ports. The bus architecture is similar to the RMESH 
architecture and can carry 0(1) bits of data. 

2.2   Related Models 

• REBSIS 

In the reconfigurable buses with shift switching (REBSIS) [20] model, each word level 
switch consists of several bit level switches. In each connection pattern each of the bit 
level switches share a common connection pattern to control the bit level buses in a uni- 
form way. Based on a control bit pattern the switch performs rotate-shift on the input 
bit pattern. It has been proved that that the REBSIS model is more powerful than sev- 
eral word models [20] but the Bit Model [13] of reconfigurable mesh has been shown 
to be able to simulate the REBSIS model using the same area. 

• RMBM A more general reconfigurable network model called the reconfigurable mul- 
tiple bus machine (RMBM) [31] was proposed to investigate effects of switch mod- 
els on relative computational power of reconfigurable network models. This model 
separates the computational aspects from the connection configuration aspects. The 
RMBM model has processors, buses, fuse lines and sets of switches. Each processor 
has one write port and several read ports. The switches can be classiffied into connect 
switches, segment switches and fuse switches. The connect switches connect a partic- 
ular port of a processor to one of the buses, the segment switches segment the bus and 
the fuse switches connect two or more buses together. There are restricted versions of 
this model which differ in the classes of switches which they allow. 

3    Some Illustrative Algorithms 

Lot of work has been done in exploiting the power of reconfigurable meshes. Algorithms for 
basic computations such as Or, And, Exor, Addition, Multiplication etc. have been designed 
and shown to be optimal on several variants of the reconfigurable mesh models. Using these 
basic data operations and additional non-trivial techniques of exploiting reconfiguration, al- 
gorithms for problems in image processing, computational geometry, graphs etc. have been 
designed. In this section some algorithms are described to illustrate the power of these archi- 
tectures. 

3.1    EXOR Computation 

The EXOR of N bits of data can be computed on a reconfigurable mesh of size 2n x 3 in 6( 1) 
time using the unit-time delay model and in 0(log n) time using the log-time delay model [24]. 
The basic idea behind the algorithm is described here. 

Based on a single input bit a 3 x 2 array of PEs set their local switch configurations to one 
of the two patterns as shown in Figure 4. If the input bit is 1 the top two rows cross-over and 
the 1-signal toggles to the other row and if the input bit is 0 then the 1-signal passes through 



the PEs, in the same row. When a 1-signal is applied to the top row input of the first processor 
of the system the EXOR of all the inputs appears at the last processor in the mesh. A 1-signal 
out of the top row indicates a result of 0 and a 1-signal out of the middle row indicates a result 
of 1. 

An example EXOR computation of 3 input bits with 18 PEs is shown in Figure 4. The 
highlighted path shows the flow of the 1-signal from the left to the right. The result of the 
EXOR computation appears at the output after a constant delay in the unit-time delay model. 

bJ = 0 b,= l 

(a) Switch settings 

I-signal 

input bits 0 1 

(b) 1 .XOR. 0 .XOR. 1=0 

Figure 4: EXOR computation 

3.2 Addition 

Addition of two n-bit numbers can be carried out in a similar way as EXOR computation. 
Each PE sets its switch pattern based on either a carry generate or a carry propagate config- 
uration. If the two input bits a, and 6, are different then the PE connects its West input to the 
East output port, which is a carry propagate configuration. If the input bits are the same then 
none of the switches are connected. The carry generate at a PE is implemented by the PE 
writing a 1 on its East port when both the bits a, and 6, are 1. 

An example addition of two 5-bit numbers is shown in Figure 5. The bits cs indicate the 
intermediate carry bits and z, are the result bits. 

Using a similar idea and constructing a k-stage ripple carry adder it was shown that ad- 
dition of n k-bit numbers (1 < k < n) can be performed in constant time using a n x nk bit 
model of reconfigurable mesh [11]. 

3.3 Parallel Prefix 

Parallel Prefix is an important operation that can be used to sum values, broadcast data, solve 
problems in image processing and graph problems etc. [24]. Assume processor piy 0 < i < 
n—1, initially contains the data element a,. The parallel prefix problem requires pi to compute 
a0 <8> ai <8> • • • <8> «;> where ® is an associative operator such as addition (+). 
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Figure 5: Addition of two 5-bit numbers. 

The given n values are assumed to be distributed one per processor on a reconfigurable 
mesh of size n. The binary associative operation <g), is assumed to be a unit-time operation. 
First, parallel prefix is performed along the rows so that each processor knows the initial prefix 
of those values restricted to its row. Next, in the last column the parallel prefix is performed 
to determine row-wise prefix solutions. Finally, within each row, the prefix of previous of 
the previous rows is broadcast so that all the processors can update their entry appropriately. 
Parallel prefix can be computed in every row simultaneously in log n1/2 iterations by appro- 
priately setting switches, broadcasting and updating values at each iteration. 

3.4 Sorting 

There are several sorting algorithms on reconfigurable mesh models. We describe here the 
algorithm presented in [11]. Sorting of a sequence can be decomposed into sort of its sub- 
sequences and data movement between the sorted subsequences. The reconfigurable mesh 
algorithm uses a variation of Leighton's eight-stage column sort [17]. The stages are a com- 
bination of stages of n1/4 sorters, each capable of sorting n3/4 numbers, and n1/,4-shuffle net- 
work stages. 

The input sequence of n numbers is assumed to be initially stored in the top row of the 
reconfigurable mesh. The sequence is partitioned into subsequences of n3/4 numbers each. 
Sorting of a subsequence is done by computing the ranks of all the numbers and then storing 
each number according to its rank by using shuffle networks [11]. Sorting of n3/4 numbers in 
constant time is carried out using a n x n3/4 reconfigurable mesh. In the first step, each of the 
rc3/4 PEs broadcast their numbers along each column of n PEs. Then the mesh is divided into 
?i3/4 submeshes each of size n1/4 x n3/4. The rank of number Xi is computed by submesh 
i using row broadcasts. The results of the comparisons made after this row broadcasts are 
added to give the rank of each number. The addition can be done in constant time as stated in 
Section 3.2. The n1?4-shuffle stage can also be implemented in constant time using a sequence 
of broadcast operations. 

3.5 Component Labeling 

The problem is to label the connected components of a digitized image. Given an n x n image 
which is distributed as a pixel per processor onto the processors of a reconfigurable mesh of 
size n x n, the connected components can be labeled in 0(log n) time under the unit-time 
delay model [24]. 

In the first step each processor examines the pixels in each of its four neighbors and 



sets its four switches so that a connection is maintained only between neighboring black pix- 
els. This 0(1) operation creates a subbus over each component. Given a linked list of pro- 
cessors overlaid by a reconfigurable subbus, the minimum(maximum) of the value stored in 
these processors can be computed in 0(log n) iterations. Each iteration computes the lo- 
cal minima(maxima) and discards the other elements. Each iteration uses a constant number 
of broadcast steps and comparison operations, and hence the total running time is as stated 
above. 

3.6   Summary of Results 

We present a brief summary of algorithms on the reconfigurable mesh models. A comprehen- 
sive bibliography of results can be found in [26]. All results are with respect to the unit-time 
delay reconfigurable mesh model. 

Problem Mesh Size Time 
EXOR of n bits 2n x 3* Constant 
Prefix-And of n 1-bit numbers 1 xn* Constant 
Maximum(Minimum) of n log n-bit numbers n x n Constant 
Addition of n k-bit numbers, 1 < k < n n x nk* Constant 
Multiplication of two n-bit numbers n x n* Constant 
Division of two n-bit numbers n x n* Constant 
Histogram of an n x n image (h gray levels) n x n 0(min(Vft+log(f),n)) 
Sort of n 0(log n) bit numbers n x n Constant 
Convex Hull of n points n x n Constant 
Smallest enclosing rectangle of n points n x n Constant 
Triangulation of n planar points n2 xn Constant 
All-pairs nearest neighbors of n points n x n Constant 
Two-set dominance counting of n points n x n Constant 
Connected components of an n x n image n x n O(logn) 

* - the bit model of reconfigurable mesh is used. 

4   Practical Considerations and Architectures 

The choice of an architecture is strongly influenced by physical fabrication constraints. The 
reconfigurable mesh has nearly constant diameter and a dynamically reconfigurable bus sys- 
tem. It is very attractive in terms of implementation because of the two dimensional topology, 
low pin requirement and highly regular structure, which are well suited for today's VLSI and 
packaging technology. 

There are several physical constraints that have to be overcome to successfully imple- 
ment these architectures. Some of the features of the reconfigurable mesh models which should 
be examined in the context of hardware technology are: 

• Reconfiguration The ability to set the local configurations of switches is one of the key 
aspects of reconfigurable meshes which is exploited in designing efficient algorithms. 
Assumptions made in the model impact the design since more flexibility in allowed 



switch patterns usually implies more area because of larger control memory etc. Most 
implementations support global control signals but implementing dynamic change of 
configuration based on local data is very expensive and is difficult to provide in general 
purpose implementations. 

• Signal Delay There is potentially a large signal delay due to a long chain of shorted 
path, set up because of configuration. The signal propagation time grows linearly with 
the length of the wire carrying the signal. There are also unpredictable delays in VLSI 
because the wire capacitance is affected by the number of processors connected to the 
wire carrying the signal. 

Recent VLSI implementations have addressed these issues and suggest that the broad- 
cast delay, although not constant, is very small. For example, only 16 machine cycles 
are required to broadcast on a 106 processor YUPPIE. GCN has shorter delays by adopt- 
ing all-active and pre-charged circuit for local switches. ABACUS architecture prop- 
agates a signal through 18 PEs in a single 8ns clock cycle. Broadcast delay can be fur- 
ther reduced by using optical fibers for reconfigurable bus system and using electrically 
controlled directional coupler switches for connecting and disconnecting two fibers. 

• Clock Timing In reconfigurable meshes variable length shorted path can be established 
based on the algorithm. If a fixed length clock is designed to accommodate the worst 
case shorted path, the clock for the system will be degraded. The constant time al- 
gorithms in the literature do not consider the clock implementation. Many clocking 
schemes are possible to accommodate the worst case path while not affecting the av- 
erage clock performance. One such proposal is variable length clock that adjusts the 
length of clock to the length of the path. Global distribution of control signals also af- 
fects the clock signals. Detailed discussion of such issues is beyond the scope of this 
paper. 

4.1   Architectures 

We look at two variants of reconfigurable architectures. One class of architectures are based 
on the abstract models and try to approximate the features of the models. We describe the 
YUPPIE and the ABACUS architectures which are representative research prototypes. The 
other class consists of architectures which have evolved from commercial FPGA designs. 
We look at the features offered by two FPGAs, namely, XILINX 6200 and the NSC CLAy. 
Though these devices have not been designed for reconfigurable computing engines, they are 
a result of demand for fast reconfigurable components. 

4.1.1    Polymorphic Torus Architecture - YUPPIE 

The Polymorphic Torus [22] consists of a physical network (PNET) and a programmable in- 
ternal network (INET) at each node of the PNET. The PNET is global while the INET is local. 
In a Polymorphic Torus consisting of n x n processors, the PNET is an n x n mesh with its 
boundary connected in either torus mode or spiral mode. Except for selection of torus or spi- 
ral mode, the PNET is a hard-wired, fixed, non-programmable network. In contrast INET is 
totally programmable. Each of the four ports of the INET can be connected to any port. 

The VLSI implementation of the 2D Polymorphic Torus is called YUPPIE (Yorktown 
Ultra Parallel Polymorphic Image Engine). YUPPIE follows a regular SIMD model of com- 



putation with a central controller (CC) generating a stream of instructions. A processor array 
(PA), made up of many bit-serial PEs connected by a Polymorphic Torus receives the instruc- 
tion stream from the CC and executes it. PEs can be selectively disabled based on local condi- 
tion, but all enabled PEs carry out the same operations on their own data. Data Memory (DM) 
consists of on-chip 256 fast-access one-bit registers for each PE, termed local data memory 
(LDM), and off-chip external data memory (EDM). The YUPPIE chip consists of 16 nodes 
arranged as a 4 x 4 mesh. A programmable length clock generator (PLCG) generates the 
timing signals for YUPPIE, since it needs to be driven by a variable length clock. 

The YUPPIE PE has a 1-bit ALU, carry register (CY), data registers (A, TR) and two 
control registers (EN, CCR). All registers are 1-bit wide and one of the data registers func- 
tions as the accumulator. The ALU can carry out basic addition and boolean operations with 
operands from physical links, local or external memory and/or the data registers. The INET 
switching is established by choosing one of two patterns broadcast by the CC. This choice is 
made depending on the data in one of the control registers, namely, CCR. 

Implementation using a 2 micron CMOS technology with two metal layers has shown 
a less than 20% overhead for the programmable interconnect and the ability to propagate the 
signal through 16 PEs in a single clock cycle. 

4.1.2 ABACUS 

ABACUS [5] is a distributed bit-parallel (DBP) architecture based on the reconfigurable mesh. 
The ABACUS processing element (PE) contains 64 bits of dual-ported memory in two banks 
and two 3-input ALUs, each of which takes two inputs from its memory bank and one input 
from the other bank. Part of the memory bank is utilized as control registers for enabling PE 
and network operation. 

At each PE, the network is composed of a wired-OR bus and four isolating switches. 
When all switches are open, two network control bits specify which of the four nearest neigh- 
bors is connected to the PE input. Each PE can also close the switch in the read direction, the 
other three switches remain open unless closed by a neighboring PE. Connected processors 
form a multiple-writer wired-OR bus. VLSI implementation of the network consists of a pre- 
charged bus which is pulled down by any PE writing a one. Additional delays are reduced by 
using local accelerator circuits. 

There are additional circuits for reading and writing to on-chip distributed memory and 
interface circuitry to external data memory. A VLSI implementation in 0.8/1 micron technol- 
ogy is expected to sustain a 8 ns cycle time. Simulations show that in worst case the signal 
can propagate through 18 PEs in a single clock cycle. A single ABACUS IC is expected to 
deliver 1-5 giga-operations per second (GOPS) on 16-bit arithmetic operations. This is ap- 
proximately 20 to 100 times faster than microprocessors implemented in comparable VLSI 
technology. 

4.1.3 XILINXXC6200 

The XC6200 FPGA [41] architecture from Xilinx is the first SRAM based FPGA architecture 
designed for implementing reconfigurable coprocessors. The XC6200 architecture features 
a fine-grained cell structure, abundant routing, built-in processor interface and supports fast 
partial reconfiguration. 

The programmable logic of an XC6200 consists of large array of reconfigurable logic 



cells each of which contains both programmable logic and routing resources. Each cell con- 
tains a flip-flop and combinatorial logic capable of implementing any two-input function or 
any type of 2-to-l multiplexer. Cells are arranged in 4-by-4 blocks and 16-by-16 tiles. The 
interconnection network consists of a hierarchy of programmable routing wires. Each cell 
can be used for logic or memory functions. When cells are configured as memory, each cell 
provides two bytes of ROM or RAM memory which can be accessed externally or internally. 

The most important feature in the new XC6200 device is the FastMap interface, designed 
to connect directly to an external processor's system bus. The FastMap interface places the 
whole FPGA into the processors address space. The processor can read and write the logic 
and the configuration memory by using normal load and store. This parallel interface allows 
the entire configuration memory to be programmed in under 100 micro-seconds. 

A random access feature allows arbitrary areas of the FPGA memory to be changed. 
This provides a fast partial reconfiguration capability. This partial reconfiguration can be per- 
formed without disturbing circuits running in other parts of the device. This facilitates shar- 
ing of hardware space by swapping in and out designs at runtime. A reconfigurable hardware 
platform based on the XC6200 architecture has been designed and is being offered as a com- 
mercial product by Virtual Computer Corporation [40]. 

4.1.4   NSCCLAy 

The National Semiconductor CLAy [39] architecture is an SRAM based Configurable Logic 
Array. CLAy was designed to support real-time algorithm and logic sharing by using dynamic 
partial reconfiguration. 

The logic cell layout is similar to existing FPGA devices, with a flip-flop and 5-input 
lookup tables. The interconnection network is made up of nearest neighbor connections, local 
and express bus wires. The full device can be configured in 640 micro-seconds. Larger de- 
signs are supported by an integrated Field Configurable Multi-Chip Module (FCMCM) which 
consists of a 2 x 2 array of CLAy devices. 

CLAy supports partial reconfiguration by which a single cell's functionality can be changed. 
This is much faster than programming the complete device and reconfiguration time is the 
order of 1 micro-second. This partial reconfiguration can be done without functional inter- 
ruption of the remaining parts of the device. These features of the CLAy devices have been 
exploited in designing novel applications [35]. 

5    Conclusion 

Configurable computing holds lot of promise for the future. To realize this potential we need 
a variety of system architectures, algorithmic techniques and software tools. We have dis- 
cussed the abstract models of reconfigurable architectures and algorithms using these models. 
The technology constraints in realizing these architectures have been examined and prototype 
implementations which try to overcome these constraints have been described. 

Currently, the designs of configurable computing systems are based on fine-grained com- 
mercial devices like Field Programmable Gate Arrays. Since FPGAs were primarily designed 
for logic emulation there has not been much progress in trying to achieve fast reconfiguration 
times. Recent SRAM based devices have started addressing this issue and we examine some 
of these devices. We believe that the wealth of ideas in the abstract world can be leveraged in 



designing systems and algorithms which exploit the available reconfiguration potential. The 
MAARC [38] project at USC explores these opportunities. 
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Abstract: 

Currently, reconflgurable computing solutions are developed by writing High level Descrip- 
tion Language (HDL) code and compiling it onto hardware. Though this approach is suitable 
for static reconflgurable devices, tools using this approach do not analyze the runtime behavior 
of the application. Hence designing tools which exploit dynamic reconfigurability is not an easy 
task. This paper presents a new approach to developing dynamically reconflgurable computing 
solutions. Computing models are developed which bridge the semantic gap between the algo- 
rithm and the actual hardware. A General Reconflgurable Computing Model (GRECOM) is 
used to capture the ability to change both the interconnections and the logic at runtime based 
on intermediate results. Two specific instances of GRECOM, the Reconflgurable Mesh and the 
FPGA Model are derived and applications are demonstrated using these models. 
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1    Introduction 

The advent of static RAM based Field Programmable Gate Arrays (FPGAs) has given rise 
to new opportunities in the reconfigurable computing area. An FPGA consists of an array 
of combinational logic blocks each with a flip-flop. The logic blocks are interconnected using 
a hierarchy of buses. The logic blocks at the periphery of the device also perform the I/O 
operations. The functions computed, the interconnection network and I/O block can be con- 
figured using external data. FPGAs also permit unlimited reconfiguration. These versatile 
devices have been used to build processors and coprocessors whose internal architecture as well 
as interconnections can be configured to match the needs of a given application. For a detailed 
architectural survey of FPGAs, see [4, 16]. 

FPGAs have been mostly used for rapid prototyping and emulation. Some of the designs 
based on reconfigurable logic have shown an order of magnitude price/performance advantage. 
But the prohibitive cost in using these devices as configurable computing engines has been 
the time for reconfiguration. Configuration of an FPGA is carried out by downloading the 
configuration information from a host processor often using bit-serial lines. The time required 
for this step is usually of the order of msec. An additional problem with existing FPGAs is that 
the complete device has to be reconfigured every time even if the new configuration is almost 
similar to the existing one. 

Current and future generation devices such as CLAy, XC6200, DPGA etc. ameliorate the 
above cost by providing partial and dynamic reconfigurability [14, 21]. It is possible to modify 
the configuration of a part of the device while the configuration of the remaining part is retained. 
Some devices permit this partial reconfiguration even while other logic blocks are performing 
computations. Devices in which multiple contexts of the configuration of a logic block can be 
stored in the logic block and the context switched dynamically have also been proposed [5]. 
To distinguish the FPGAs which do not provide partial and dynamic reconfigurability we shall 
hereafter refer to them as static configurable devices. 

Traditional approach to utilizing static configurable devices has been to use automated 
synthesis tools such as FPGA Express, OrCAD Express, Leonardo, Warp2, PL-Link etc. De- 
signs are first specified using a hardware description language such as VHDL or Verilog, at the 
register transfer or gate level (Figure 1). This design is usually analyzed and verified using 
technology independent tools and is then submitted to logic synthesis for logic minimization 
and technology dependent mapping. Finally, physical design tools are used for placement and 
routing. To avoid designing solutions from scratch every time, components from a Library of 
Parameterized Modules (LPM) are used in the design. Some work is also being performed 
in mapping behavioral descriptions in high-level languages (C, C++, Occam etc.) to hard- 
ware. [8, 9]. 

This approach of logic synthesis as opposed to algorithm synthesis allows the user to specify 
the design using a behavioral model. But this abstraction is achieved at the cost of significant 
performance. To obtain better timing and layout characteristics, users fine tune the solution by 
editing the physical design [6]. Also, reconfiguration is performed by analyzing the application 
at compile time and the synthesis tools do not support analyzing the runtime behavior to take 
advantage of dynamic reconfigurability. By collapsing the abstraction layers we can expect to 
extract significant performance. Also, potentially this can lead to tools which exploit runtime 
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Figure 1: Traditional Design Synthesis Approach and the Modeling Approach 

reconfiguration. 

In our approach, we model the hardware features of reconfigurable devices which allows 
the user to think of dynamically reconfigurable computing at a high level during application 
development phase (Figure 1). Bridging the semantic gap between the algorithm and the 
hardware by using such a model allows the user to develop reconfigurable computing solutions 
in a natural manner. With our model the algorithm synthesis approach can be used and the 
algorithm can be specified as a computation performed on the input data. The computations 
performed by each element can be chosen from a set of operations supported by the model. 

We first abstract the reconfigurable computing devices using General Reconfigurable Com- 
puting Model. We derive the Reconfigurable Mesh model and an FPGA based model and 
illustrate how algorithms can be mapped onto the latter model by using a simple example. 
This manuscript is a preliminary summary of ongoing experiment under the Models, Architec- 
ture and Algorithms for Reconfigurable Computing (MAARC) project. 

2    Reconfigurable Machine Models 

In this section we abstract various features of configurable computing devices which differentiate 
between various models. These parameters form the basis of the general model. By varying 
the values for these parameters we derive two specific variants of the general model. 

2.1     A General Model 

The General Reconfigurable Computer Model (GRECOM) covers most reconfigurable devices. 
It consists of a number of Processing Elements (PEs) linked together by an Interconnection 



Network (IN) as in Figure 2. The operations performed by the PEs as well as the topology 
of the IN can be configured. PEs operate synchronously and have a fixed amount of local 
storage. The configuration information specifies the operation performed by each PE and the 
IN topology. 

Processing Elements (PEs) 

«.     •     •    • 

New 
Configuration 

Current Global State 

/Old configuration plus\ 
V PE memory contents / 

Program 

Figure 2: The General Reconfigurable Computer Model. 

Since the PEs operate synchronously, the machine has a well defined global state. The 
global state is completely specified by the current configuration and contents of the local stor- 
age of all the PEs. The machine can also be reconfigured either partially or completely. In 
partial reconfiguration the existing configuration of some part of the device is retained while the 
configuration of the remaining part can be changed. This is modeled in GRECOM by the con- 
figuration control block. As shown in Figure 2, the new configuration is generated based on the 
program as well as the current state. The ability to use information about the current state to 
reconfigure is analogous to the conditional branch instructions of a traditional microprocessor. 

The four basic parameters of the model are the PE granularity, IN topology, the method 
of reconfiguration and the reconfiguration time. 

• PE granularity: This parameter is a measure of how coarse or fine grained the com- 
putations performed in the PE are. As an example, we can distinguish between word 
oriented models and bit oriented models. 

• IN topology: The Interconnection Network is an important aspect of the model since 
the communication to computation ratio is very high in most configurable computing 
applications. This parameter models the organization of the connections between the 
PEs. 

• Method of reconfiguration: The computation performed by the PE and/or the in- 
terconnection network can be reconfigured. This reconfiguration can be achieved either 



by explicit transfer of control information from an external control unit or by using in- 
termediate computational results. This parameter determines how the algorithm can be 
implemented on the model. When reconfiguration can be achieved only by using external 
control information, a dedicated unit such as a processor is needed to do this control 
information transfer. 

• Reconfiguration Time: After a new configuration is specified by using the above 
method of reconfiguration, the delay before the next computation can start is a criti- 
cal parameter. Reconfiguration Time determines how much the algorithm can make use 
of the reconfiguration potential. When Reconfiguration Time is very high usually the 
applications do a single reconfiguration at the beginning which does not change through- 
out the computation. If the model supports partial reconfiguration this time can be 
overlapped with computation to design efficient solutions. 

By varying these parameters, we derive the Reconfigurable Mesh model and the FPGA 
model in the following sections. 

2.2    Reconfigurable Mesh Model 

The reconfigurable mesh model [13, 18] has its origins in SIMD machines. The reconfigurable 
mesh is a two dimensional variant of the multi-dimensional reconfigurable bus architecture. 
The model consists of an array of processing elements embedded in a very flexible intercon- 
nection network (Figure 3). The processing elements locally decide upon the IN configuration 
and operation to be performed. A number of efficient algorithms for diverse areas have been 
developed for this model of computation [10, 15, 19, 20]. Machines have been built based on 
the reconfigurable mesh models. These include the CLIP series [7], YUPPIE [12] based on the 
Polymorphic Torus Network model, Gated Connection Network [17], etc. 

• Processing Element: Each PE can perform standard arithmetic and logic operations on 
one bit operands in unit time. Each PE has four ports, one each for the four connections 
to neighboring PEs, and fixed amount of local storage (Figure 3). 

• Interconnection Network: The IN is a 2D mesh with each PE linked to its four nearest 
neighbors as in Figure 3. These links can be connected together to form buses of arbitrary 
shapes. This is achieved by using the link switches in each PE. By using the local switches 
a bus can be configured into several distinct components of varying shapes such as rows, 
columns, diagonals, zig-zag and staircase. All PEs connected to the same bus can read 
from or write to the bus in unit time. 

• Method of Reconfiguration: Reconfiguration can be achieved by either using control 
signals broadcast globally or by using local state. Local state is defined by the four port 
configurations and the local storage. 

• Reconfiguration Time: The Reconfiguration Time of the reconfigurable mesh model 
is of the order of the computation time. This allows for a potential reconfiguration every 
cycle. 



Figure 3: The reconfigurable mesh model and the PE architecture 

This ability of the reconfigurable mesh model to allow single cycle reconfiguration, arbitrary 
IN topologies, and use of local data to determine configuration has led to the development 
of several efficient algorithms. Examples include sorting N numbers, multiplying two N bit 
numbers and NxN matrix multiplication all in 0(1) time onanA^xJV reconfigurable mesh [15, 
20]. Efficient algorithms for this model of computation have been found for problems such as 
maze routing, Voronoi diagrams, histogram computation [10, 19]. 

2.3    FPGA Model 

The FPGA model consists of a NxN array of processing elements embedded in an Interconnec- 
tion Network. Most FPGA architectures have a similar structure [1, 2, 3, 14, 21]. Connections 
to I/O pins are provided along the perimeter of the array. The operations performed by the 
PEs as well as the IN topology can be configured. 

• Processing Element: We model a PE as a configurable combinational logic block with 
an optional flip-flop at the single output. The combinational logic block can compute 
a function of A',n number of inputs producing a one bit result. In current devices X;„ 
usually varies from 2 to 4. Almost all FPGAs employ this basic arrangement in their PE 
designs. The configurable logic is usually implemented using LUTs or the sea-of-gates 
approach. LUT based PEs can also be configured as a 1 bit word RAM; that is, the 
look-up tables can also be written, using the inputs as the memory address. The input 
as well as the outputs can be connected to various wires of the IN. These connections are 
controlled by multiplexers whose control signals are specified as a part of the configuration 
information. The Figure 4 shows the proposed PE model. 

- Tcomb: It is the time taken for the signal to propagate from the input of the input 
multiplexer to the output of the output multiplexer. 

- Tseq: It is time taken for the signal to propagate from the output of combinational 
logic to the output of the output multiplexer. 



Mux 

Configurable 

Combinational 

Logic 

Block 

3 Interconnection Network 

Figure 4: FPGA model. 

Interconnection Network: Typically, the IN topology in FPGA architectures is hier- 
archical. The IN consists of unit length wires connecting each PE to its four neighbors 
and wires of length N along each row and column. Most architectures also have wires of 
shorter length forming intermediate levels of the IN hierarchy. The connectivity offered 
by the IN is configured using switches situated at the end of each wire which can connect 
different wires, at possibly different levels in the hierarchy, and the PE input and output 

multiplexers. 

The precise propagation delay of a signal traveling along a path of the IN depends on 
various factors. The main factor is the number of switches and wires in the signal path. 
Also, as the device gets routed, the resources to make these connections may get used up, 
so depending on the design complexity and the architecture the delay can vary. Neighbor 
connections are almost always faster but also can be influenced by existing routing, i.e. 
logic block A is to the left of logic block B, and the route goes from left side of A to right 
side of B. The delay could be 4 times the delay from the right side of A to the left side of 
B. Fanout of the signals also affects the delays. Wires of long length are usually far less 
sensitive to multiple loads compared to the neighbor connections. To simplify the model 
and to retain it as a general model, we neglect these low level factors affecting the delay. 
For the purposes of algorithm mapping, these effects play a secondary role. 

In our model the IN has a two level hierarchy having two different delays, T/oca; and 

J- global- 

- Tiocaf. The time taken for a signal to propagate from the output of one logic block 
to the input of the neighboring block. 

- Tgiobai- The time taken for a signal to propagate from the output of one logic block 
to the input of the block which is at a distance of at most N along the same row or 
column. In current systems the ratio of Tgi0bai to Tiocai varies from 5 to 10. 

Method of Reconfiguration: The reconfiguration information stored in SRAM cells of 
the FPGA determines its functionality. This information specifies the logic performed by 
the PEs, the connectivity of the IN, and the operation of the I/O pins. Among current 



FPGA architectures, the amount of information needed to configure a logic block is a 
few bytes. Additional bits are required for IN configuration. Thus, the total amount of 
information required to configure an entire array is a few hundred kilobits. In our FPGA 
model the configuration is only supported by external transfer of control information. 

• Reconfiguration Time:   We define the following parameters for the reconfiguration 
times in our model - 

- Tcr: The time required to reconfigure the complete device. 

- Tsr: The time required for reconfiguring a single logic block. 

- X}r: The time required to reconfigure one line i.e. a row or a column of logic blocks. 

In current generation FPGAs the time required for complete reconfiguration is in the 
range of a few fisec to a few msec. 

Several FPGA architectures offer partial reconfiguration capability; that is, some part of 
the device can be reconfigured while the rest of keeps is performing computations based 
on prior configuration. The time required to reconfigure a single PE is in the range of 
lOOnsec to 10/zsec. Some vendors have recently announced devices which can be memory- 
mapped into the control processor address space and hence can efficiently support single 
block reconfiguration and reconfiguration of a complete row or column. 

3    An Illustrative Application 

This section illustrates the mapping of an algorithm onto the FPGA model and its analysis 
using the model parameters. The algorithm exploits partial reconfigurability to dynamically 
reconfigure parts of the FPGA at various stages of computation. 

The algorithm that we consider is counting the number of Is in an n x n bit image of Os 
and Is. This is a key operation required in image processing algorithms for median row [11] 
and histogram determination [19]. The operation is carried out in two phases. We first outline 
the required FPGA configuration and then describe the two phases. 

3.1     FPGA configuration and algorithm overview 

As described in Section 2.3, a PE can be configured as 1-bit word RAM. To store the n X n 
bits, \j] rows of PEs in n columns are configured as RAM, k being the number of bits a single 
PE can store . In the next two rows are PEs are configured as a serial half adder (see Figure 
5). A 2:1 multiplexer is used to select one of the two adder outputs that is to be written back 
to the RAM (see Figure 6). Based on the PE model described in section 2.3, the adder and 
multiplexer can be mapped into 4 PEs - two for the adder and flip-flops,one for the OR gate and 
one for the 2:1 multiplexer. Thus the RAM and adders can be configured using n X ([|] + 4) 
PEs. 

Computation proceeds by selecting appropriate bits from of the RAM, adding them and 
storing back the result. The address and control generator is responsible for generating the 
appropriate control signals each clock cycle. This can be done using a synchronous counter and 



some additional logic, which can be implemented using a small number of PEs. These signals 
are applied to each 1-bit RAM column and adder, since they all operate in parallel. 

The algorithm consists of two phases. In the first phase, the number of Is in each column 
of the array are added. Next, the column sums are added to determine the total number of Is. 
The following section describes the two phases. 

n LUTs- 
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Address and 
Control 
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Generator 

n Serial HAs 

Figure 5: FPGA configuration. 
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Figure 6: Configuration for a single RAM column. 

3.2    Exploiting Partial and Dynamic Reconfiguration 

Each serial adder is used to compute the sum of the bits stored in the column above it. The 
computation for a single column proceeds as follows. Initially, the column stores n 1-bit num- 
bers. In the first iteration, bits i and i + 1, i = 0...n - 1 are added to obtain | 2-bit numbers 
which are stored in the same positions. In general, in iteration j, -~ j-blt numbers are added in 



Clock cycle Address Rd/Wr Clear/CarrySum Action 

0 0 1 0 Read bit 

1 1 1 0 Read bit 
2 0 0 0 Write sum 

3 1 0 1 Write carry 
4 2 1 0 Read bit 

5 3 1 0 Read bit 

6 2 0 0 Write sum 
7 3 0 1 Write carry 

Reconfigure 

8. 0 1 0 Read bit 
9 2 1 0 Read bit 

10 0 0 0 Write sum 
11 1 1 0 Read bit 
12 3 1 0 Read bit 
13 1 0 0 Write sum 
14 2 0 1 Write carry 

Table 1: Address and Control signals for column addition. 

pairs, j = O...logn. Thus, Y^fli ^ ~ ^(n) ^ Edition operations are required to add the bits 
in one column. The above steps occur in parallel for all n columns resulting in the computation 
of the column sums. 

Table 1 shows the addresses and control signals required for the first two iterations (as- 
suming n = 4). The address and control signal generator would need to be reconfigured every 
iteration. This would involve reconfiguring only a few PEs; the PEs configured as RAM and 
adders would not be affected. Thus the dynamic reconfiguration required each iteration can be 
done quickly using the partial reconfiguration capability of FPGAs. 

The next phase is the summation of the n column sums of (logn + 1) bits to obtain the 
2 log n + 1 bit result of the number of Is in the n X n array. At the beginning of this phase the 
adders are reconfigured as full adders so that they can receive one bit each from two separate 
RAM columns. Assuming the number of inputs to a PE, Xi„ > 3, no extra PEs would be 
required for full adder operation. 

The summation is performed in logn iterations as follows. In the first iteration, adder 2z 
will add the two numbers (logn bits each) in columns 2i and 2i + 1, i = 0...n - 1. In iteration 
j, adder 2H will add the two numbers (logn + j - 1 bits each) 2H and 2j(i + 1), j = l...logn, 
i = 0...n - 1 (the i additions in iteration j occur in parallel). Thus the total number of bit 
addition steps required is E^Oog n + j) = § log2 n + \ log n. 

Note that for each iteration, at least one of the memory columns feeding a serial adder is 
different from the one in the previous iteration. Thus the reconfiguration of the connections 
between RAM columns and adders would be required before each iteration of this phase of 
computation.   £■ connections need to be reconfigured in iteration j. Thus in all, Ylj'ii % = 

10 



2« — 1 connection reconfigurations would be required. The partial reconfigurability feature can 
be used to make these selective changes to the IN at the beginning of every iteration. 

The total number of steps (and hence the number of clock cycles) required in the two 
phases have been derived. We can use the FPGA model parameters to obtain an estimate of 
the clock period. The following operations occur each clock cycle. Address and control signals 
are generated (Tseq), the signals are propagated to the RAM columns (T5/0(,a(), RAM data is read 
{TComb)< the data is propagated to the adders (T;oca;), sum and carry are computed and latched 
in flip-flops [Tseq], output passes through multiplexer (Tcomb) to the RAM (X/oca/) and is finally 
stored in the RAM (Tcom(,). Thus the clock period is Tciock = 3Tcom& + 2Tseq + 2Tiocai + T5/06a/- 

Let Tacsg be the time required for a single reconfiguration of the address and control signal 
generator and Tcon be the reconfiguration time for a single RAM column to adder connection. 
Then the total reconfiguration time is Treconj = 2TacSglog n + Tcon(2n — 1). 

4    Conclusions 

In this paper we have presented a new approach to designing configurable computing solutions 
which is better suited to exploiting dynamic reconfiguration than traditional approach. Our 
approach of modeling allows the algorithm synthesis approach which is a more natural way of 
developing applications. 

We described a general model of reconfigurable computing and derived two specific variants. 
The reconfigurable mesh model is a very powerful model with efficient algorithms for several 
computations. Restricted variants of this model have been implemented and the model provides 
interesting ideas as to the directions in which reconfigurable devices should evolve. The FPGA 
model abstracts current generation devices and can be used to map algorithms. We illustrate 
our approach by implementing an algorithm that exploits dynamic reconfiguration on the FPGA 
model. 
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Abstract. In this paper we propose a fast parallel implementation of 
Discrete Fourier Transform (DFT) using FPGAs. Our design is based on 
the Arithmetic Fourier Transform (AFT) using zero-order interpolation. 
For a given problem of size N, AFT requires only 0(N2) additions and 
O(N) real multiplications with constant factors. Our design emploies 
2p + 1 PEs (1 < p < N), O(N) memory and fixed I/O with the host. 
It is scalable over p (1 < p < N) and can solve larger problems with 
the same hardware by increasing the memory. All the PEs have fixed 
architecture. Our implementation is faster than most standard DSP de- 
signs for FFT. It also outperforms other FPGA-based implementations 
for FFT, in terms of speed and adaptability to larger problems. 

1    Introduction 

The Discrete Fourier Transform (DFT) plays a fundamental role in digital sig- 
nal processing. The complexity and computation time of algorithmic approaches 
for forward computation of DFT, are essential issues in algorithms where many 
forward DFTs are required while one inverse Fourier transform must be per- 
formed at the end. For a problem of size TV, the sequential computation time of 
a straightforward approach is 0(N2) and is characterized mainly by the large 
number of complex multiplications and additions. This fact limits the compu- 
tational performance of the approach as well as the algorithmic efficiency of 
implementations using Field Programmable Gate Arrays (FPGAs). 

The FPGA based implementations for computing the DFT, proposed in [12, 
8, 11], use the Fast Fourier Transform (FFT) to reduce the computation time 
and complexity to 0(JVlog2 N). The basic computation unit is the butterfly. 
Butterfly is a repetitive structure that has 2 inputs and 2 outputs. It involves 

This research was performed as part of the MAARC project (Models, Algorithms 
and Architectures for Reconfigurable Computing, http://maarc.usc.edu). This work 
is supported by DARPA Adaptive Computing Systems program under contract no. 
DABT63-96-C-00049 monitored by Fort Hauchuca. 



one complex multiplication, one complex addition and one complex subtraction. 
For a problem of size N, the algorithm requires log, N stages with N/2 butterflies 
in each stage. Even though these designs optimize the structure of the butterfly, 
the complexity still remains high. All these designs are solutions optimized for 
a particular problem size. For larger problems, re-design is required resulting in 
area penalty. Parallelism is not exploited and the designs are not scalable except 
the one proposed in [11]. In [8], the idea of FPGAs with an external multiplier is 
used to overcome the critical issue of complex multiplication. This solution has 
still problems since it adds extra control/complexity and requires a large number 
of I/O pins for interfacing the multiplier chip. In spite of this, the computation 
time is not attractive. The implementation in [11] uses the CORDIC approach 
for optimizing the butterfly by eliminating multiplications. Again, the resulting 
performance is not attractive. 

In this paper we propose a novel parallel, scalable, partitioned solution for 
computing the DFT using FPGAs, based on the Arithmetic Fourier Transform 
(AFT). Using this approach, we can solve larger problems with fixed hardware, 
simply by increasing the memory size. We can linearly speed-up the computa- 
tion proportionally to the number of PEs employed and achieve superior per- 
formance compared with previous FPGA-based solutions. Also, it offers faster 
solution compared with most standard DSP designs for computing the DFT. 
The key idea of our design is the use of an algorithmic approach to the prob- 
lem. Contrary to traditional approaches, we perform an algorithmic design for 
reconfigurable devices, based upon the architecture/features of the device. While 
known techniques map an algorithm for DFT onto the device and perform de- 
vice dependent optimizations, our methodology emploies algorithm synthesis 
techniques instead of logic synthesis. This alleviates the FPGA's restriction of 
fast/compact adders vs slow/area-consuming multipliers. Complex multiplica- 
tion is a critical issue in DSP applications and can lead to poor performance 
of FPGA-based solutions. AFT turns to be a suitable algorithmic approach for 
FPGAs since it is less complex than the FFT and performs real multiplications 
with constant factors instead of complex multiplications. 

The Arithmetic Fourier Transform is based on the Möbius inversion formula 
of series and has been shown to be competitive with the conventional FFT in 
terms of accuracy, complexity and speed [9]. It needs 0(N2) additions and O(N) 
real multiplications by constant coefficients. It reduces the computation time of 
DFT to O(N). In our design, two sets of p PEs (1 < p < N) and an additional 
PE are used for computing 2N + 1 Fourier coefficients [7]. Our design is scalable 
over p (1 < p < N), thus it can achieve 0(p) speed-up. It is also a partitioned 
solution since it can solve larger problems by increasing the memory size in pro- 
portion to the N the size of the problem. In each set, all PEs have the same 
architecture and perform additions and zero-order interpolation. The additional 
PE performs the scaling of the intermediate values by constant factors. All the 
PEs are cascaded using pipelining. The data as well as the control signals move 
from left to right. The complete design requires O(N) memory and has fixed 
I/O bandwidth. External memory is used for storing the scaling factors as well 



as intermediate Fourier coefficients. Constant coefficients multiplier (KCM) [2], 
is used for performing the scaling operation. KCMs use the Distributed Arith- 
metic approach (DA) and turn out to be a very efficient choice for digital signal 
processing in terms of speed and area. The compact size and high performance 
of the KCMs compared with standard full multipliers, are promising features 
that make the AFT algorithm an efficient solution for computing the DFT using 
FPGAs. In addition, the parallel/modular structure, the regular architecture as 
well as the fixed, independent of the problem size I/O bandwidth, make our 
approach an attractive solution for implementation in FPGAs. 

Preliminary estimations shows that our design achieves speed-up of 2-10 over 
most standard DSP designs for 256-FFT. Compared with the Fastest FFT in the 
West [12], the CORDIC approach [11] and the implementation in [8], our design 
outperforms these solutions in terms of speed and adaptability to larger size 
problems. Our preliminary implementation reported here using Xilinx devices, 
can be further optimized resulting in higher speed and less area. 

This paper is organized as follows. In Section 2 we describe the Arithmetic 
Fourier Transform while in Section 3 we introduce our scalable architecture for 
AFT. In Section 4 the computation time and area estimations are shown. Finally 
in Section 5 comparisons are discussed and concluding remarks are made. 

2    Arithmetic Fourier Transform 

The Arithmetic Fourier Transform (AFT) is based on the Möbius inversion for- 
mula of series. Since it involves only additions and real multiplications by con- 
stant factors, it is computationally less complex than FFT while it achieves 
0(log, Ar) speed-up over it. An introduction to AFT is given below and detailed 
descriptions of it can be found in [7, 9]. 

Given 2Ar input samples A(m),m = 0,1, ...,2N — 1, we compute an average 
and 2N alternating averages over them. All these averages are scaled by constant 
factors and then the Möbius inversion formula is applied for the computation 
of 2Ar + 1 Fourier coefficients. The Möbius inversion formula theorem [5] and 
the definition of the alternating average, are the key mathematical tools for the 
AFT algorithm. 

Theorem (The Möbius inversion formula) Let f(n) be a non vanishing 
function in the interval 1 < n < N and f(n) = 0 for n > N, where n, N are 
positive integers. If 

[N/ni 

m=l 

then 
\_N/n\ 

k = l 

where [...] denotes the integer part of a real number and fi(k) is the Möbius 
function. 



The Möbius function is defined as 

fi(n) = 1 if n = 1 
p.(n) = (-l)r  if n = pipn—Pr where p,-(i=l,2,...,r) distinct primes 
n(n) = 0 if p2 | n for some prime p 

Definition (Alternating Average) The 2nth alternating average B('2n, a) 
of the In values A(mT/2n + aT), 0 < m < 2n - 1 , is defined as: 

1    2n-l 

B(2n, a) = Ö- 5^ (-l)m,4(mT/2n + aT) 
m=0 

where a is a shifting factor, -1 < a < 1. Assuming now a finite Fourier series 
A(t) with period T, we can represent it as: 

N N 

A(t) = ao + ^ a„ cos 2irnf0t + 2J ^n sin 27m/o* 
n=l n=l 

where /0 = 1/T, a„ and bn are the real and imaginary parts of the Fourier 
coefficients of the non vanishing function in the interval -TV < n < N and ao 
is the mean of A(t). Applying the Möbius inversion formula to A(t), we can 
compute the 27V + 1 Fourier coefficients in terms of the alternating averages as 
follows: 

1      2N |W/"J 
a° = rX^(m)i   a"=   E  /*(03(2n,0) 

m = l i = l,3,.. 

Wn\ _ 
bn=    E   M0(-l)^5(2n,—) 

4=1,3,... 

where n = 1,2, ...,7V and m = 0,1, ...,27V-1. 
For computing the alternating averages S(2n,0), £?(2n, ^j) from the input 

samples A(m), we use zero-order interpolation for computational efficiency [9] . 
In this method we interpolate an unknown value A(mT/2n + aT) to a known 
input sample A(i), where i is the integer part of mT/2n + aT. The resulting 
error due to this approximation is shown to be tolerable [9, 10]. The AFT com- 
putation method presented above, requires (27V + l)2 additions and (27V + 1) 
multiplications with constant factors, for computing 27V + 1 Fourier coefficients. 
The reduced complexity, the use of scaling by constant factors instead of com- 
plex multiplications and the amenability to parallel processing makes AFT more 
desirable computationally than FFT [10]. 
In Figure 1 we can show the structure of the AFT algorithm. In Part I the non- 
scaled alternating averages are computed while in Part II the scaling operation 
and the computation of ao take place. Finally, in Part III the 27V Fourier coef- 
ficients are computed. Multiplications with constant factors are performed only 
in Part II while in the other parts additions and zero-order interpolation are 
performed. The Möbius values in the last part define the sign of the alternating 
averages. 
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Fig. 1. Structure of AFT 

3    A Scalable Architecture for AFT 

In this section we show a scalable architecture to map the AFT algorithm (see 
Figure 2). Each part of the architecture corresponds to a part of the AFT struc- 
ture in Figure 1. Data and control signals flow from left to right. 

In Part I, p PEs are employed to compute the alternating averages. An input 
buffer Bi of size 2./V x w is used for storing the input window of 27V samples, 
where w denotes the number of bits in each input sample. Assuming that p 
divides N, each window is fed N/p times into the pipe. Let PEij denote the 
ith PE in Part I, 1 < p < N and n = 1,2, ...,N. In PE\<nmodv, the alternating 
averages B(2n, 0) and B(2n, ^) are computed during the \n/p]th feeding of the 
input data window into the pipe. Each PE checks if the received data is needed 
for its computation based on the zero-order interpolation. The interpolation is 
implemented using local registers and a comparator for checking the index of the 
received sample. Every 2N units, p alternating averages are computed. Thus, the 
total computation time for 27V alternating averages is %E- -j- 2p — 1 units. All 
the PEs in this part have the same architecture and consist of one adder, one 
comparator and local registers. The local registers are used for performing the 
interpolation as well as for interconnection with other PEs. 

In Part II, one PE is employed for scaling the averages computed in the 
previous part and for computing the mean ao- This PE is denoted as PEmui. 
Totally 2p scaled averages are computed every 27V time units. PEmui employes 
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one Constant Coefficient Multiplier (KCM) [2] for computing CLQ as well as for 
scaling £(2n,0), B(2n, ^j) by constant factors during each step. Using the 
hybrid technique described in [2], we have to precalculate 16 values for each 
scaling factor. The hybrid technique of multiplication is a hexademical equivalent 
of the long hand method. Since a single hex digit represents four bits, the look- 
up table for each constant factor has entries for 0 to 15(F). Thus, the size of 
the external memory Ms would be 16./V x (w + log2 w). The set of precalculated 
values of constant factor ^ is stored in 16 consecutive locations of the memory, 
starting from the ith memory location where 1 < i < N. PEmui also employes 
local registers for interconnection with other stages. 

In Part III, p PEs are employed to compute the Fourier coefficients. Similar 
to Part I, the PEs in this part are denoted as P-E^i- All the PEs have the 
same architecture. Each of them consists of one adder, one comparator and local 
registers. As in the first group, each processing element checks if the received 
average is needed in its partial sum. This checking is performed using the index 
of the incoming average. The Möbius values required for the computation of 
the partial sums are provided by an external memory MM- The memory size 
is \%-] and the stored values are { — 1,0,1}. Few local registers are employed 
for controlling the data flow between consecutive PEs. A buffer Bj is employed 
for storing the intermediate results of the computation. When a new set of 2p 
alternating averages are available to Part III, the intermediate results of the 
computation and the Möbius function values are fed back from the rightmost 



to the leftmost PE. The size of Bj is 2p x (w + 21og2 w) where w denotes the 
number of bits of each input sample. In this part, only the Fourier coefficients 
ai. b\. an, b2...., a,v/3, 6^/3 are computed since for n > N/3, a„ and b„ are equal 
to alternating averages B(2n,a). 

Since the computation time of 2N alternating averages is =j- + 2p- 1 units, 

the total computation time for 2-/V + 1 Fourier coefficients becomes ^j-+3p+[|] 
units. The throughput rate of KCM critically affects the overall performance 
since it determines the minimum time unit. The architecture employes 2p adders, 
1 KCM. few local registers and external memories. The total size of the external 
memories is O(N). A key advantage of the design is that it is scalable over p, 
1 < p < N, thus it can linearly speed-up the computation by increasing p. It can 
also solve larger size problems (at a lower throughput rate) by simply increasing 
the memory but still using the same number and structure of PEs. 

4    Performance Estimates 

Table 1 lists the estimated area for various components of our architecture. We 
estimated the area of each of the functional blocks and the total area for each 
PE was then derived. All the PEs in a group (I or II) have the same architecture. 
Thus, each of them occupies the same constant area. We have assumed 16-bit 
input data and that our design is mapped onto Xilinx XC4000 series of FPGAs. 

CLBs per Function PE^i PE2,i PEmui 
Registers 110 140 50 

16-bit comparator 2 2 - 
16-bitadder 16 16 - 
16-bit KCM - - 230 

Control 2 2 2 
Total CLBs 130 160 282 

Table 1. 
function 

PE area requirements in terms of number of CLBs to realize the 

Our design consists of p PElti, p PEn,i and one PEmui- Assuming 27V input 
samples, the total time for computing the 2-/V+1 Fourier coefficients is ^-+3jH- 
[£] time units. The time unit is determined by the performance of the KCM 
since Part II is the most time-consuming stage of our design. The pipelined 
performance of a 16-bit operand KCM (after place and route) is 50MHz [2] 
using the —3 speed grade components. The performance of a 16-bit adder is in the 
range of 100MHz using —3 speed grade components [6]. Thus, there is enough 
time for the PEs in parts I and III to complete their operations using 50MHz 



clock rate. Currently, -2 speed grade devices are available. Thus, bOMHz system 
clock rate is an achievable goal for the entire design. Table 2 shows the area 
requirements and estimate of the computation time for two designs. We assume 
256 input samples and bOMHz system clock rate. 

Hardware Area Requirements Computation Time 
p = 8 2602 CLBs, 3 XC4025 4124 time units (82.48 fisec) 
p= 16 4922 CLBs, 5 XC4025 2104 time units (42.08 fisec) 

Table 2. Area and performance estimates 

5    Comparisons and Conclusions 

In this paper, we have proposed a novel parallel, scalable, partitioned solution 
for computing the DFT using FPGAs. Our solution based on the AFT turns 
out to be more efficient than the FFT based approach in terms of area and 
speed. Our design is scalable over 1 < p < N, where p is the number of PEs 
employed. We can also linearly speed-up the computation proportionally to p. 
The architecture of the PEs and the I/O bandwidth are fixed and independent 
of the problem size. The required memory is O(N). Our design can solve larger 
problems (with reduced throughput) with fixed hardware. 

In Figure 3 and in Table 3 the execution times of various designs for 256- 
FFT are shown. The input samples are 16-bit data for all the designs. Figure 
3 shows the results of a benchmark evaluation [12] of DSP-based and Xilinx 
FPGA-based designs. Our design achieves speed-up of 2 — 10 over most single 
chip DSP designs for 256-FFT. 

Implementation Area Requirements Computation Time 
Xilinx 3 nodes [12] 1 XC4025 102.4 fisec 
Xilinx 70MHz[12] 1 XC4025 223 fisec 
Xilinx 60MHz [12] 1 XC4025 312.5 fisec 
PDSP16116/A [8] 2 Chips 61.4 fisec 
CORDIC l [11] 10 XC4010 5000 fisec 

Table 3. Performance of FPGA-based designs for 256-FFT 

1 1000-FFT 
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Fig. 3.   Performance of DSP-based  and  FPGA-based  designs for 256-FFT 
(from[12]) 

In Table 3 the performance of five FPGA-based implementations are shown. 
Three of them are from "The Fastest FFT in the West" [12]. In that work a 
radix-2 butterfly FFT design was used. The implementation in [8] makes use 
of one Altera FPGA and a PDS P16116/A 16-bit complex multiplier to over- 
come the critical problem of performing complex multiplication in FPGAs. A 
radix-4 design and necessary control were mapped onto the Altera FPGA. The 
implementation in [11] uses the CORDIC approach to eliminate the complex 
multiplications. Even though it computes a 1000-point FFT, the performance is 
not attractive compared with our approach. Table 3 also shows the area require- 
ments of these implementations. 

Our design is faster than the earlier FPGA-based implementations. The im- 
plementations in Table 3 are designs optimized for a particular problem size 
and device features and need to be redesigned for larger problems. Our design 
can also handle larger problems with the same fixed hardware by increasing the 
memory. Known implementations exploit the power of a single chip while we 
have developed a scalable and partitioned solution with high performance and 
adaptability to larger problems. Our performance estimation has been based 
on a preliminary implementation and no optimizations have been performed. 
Further improvement of the performance of our design is possible. Parallelism 
can be exploited; for example parallel I/O can improve the performance signif- 
icantly. Many registers can be eliminated by efficiently performing zero-order 



interpolation. Other interpolation approaches (such as first-order) can also be 
exploited. 

The work reported here is part of the USC MAARC project. This project is 
developing algorithmic techniques for realising scalable and portable applications 
using configurable computing devices and architectures. Contrary to traditional 
approaches to configurable computing, in our approach the user "sees" the archi- 
tecture/device features and uses algorithm synthesis techniques instead of logic 
synthesis. We are developing computational models and algorithmic techniques 
based on these models to exploit dynamic reconfiguration. In addition, compi- 
lation onto reconfigurable hardware is also addressed. Some related results can 
be found in [1], [3], [4]. 
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Abstract 
Object recognition involves identifying known ob- 

jects in a given scene. It plays a key role in image 
understanding. Geometric hashing has been proposed 
as a technique for model-based object recognition in oc- 
cluded scenes. However, parallel techniques are needed 
to realize real-time vision systems employing geomet- 
ric hashing. 

In this paper, we develop a design technique for par- 
allelizing geometric hashing on an FPGA-based plat- 
form. We first transform the hash table which con- 
tains symbolic data into a bit-level representation. By 
regularizing the data flow and exploiting bit-level par- 
allelism in hardivare, our design achieves high perfor- 
mance. Using our approach, given a scene consist- 
ing of 256 feature points, a probe can be performed 
in 1.65 milliseconds on an FPGA-based platform hav- 
ing 32 Xilinx 4062s. In earlier implementations, the 
same probe operation was performed in 240 millisec- 
onds on a 32K-node CM2 and in 382 milliseconds on 
a 32-node CM5. Also, the same operation takes 40 
milliseconds on a 32-node IBM SP-2. By parameter- 

*This research was performed as part of the MAARC 
(Models, Algorithms, and Architectures for fleconfigurable 
Computing) project. This work is supported by DARPA Adap- 
tive Computing Systems program under contract no. DABT63- 
96-C-0049 monitored by Fort Hauchuca. 

izing the application and the device characteristics, we 
derive an area-time efficient design based on these pa- 
rameters. Furthermore, our approach can be applied 
to many geometric hashing methods and is portable to 
other FPGA devices. 

1    Introduction 
Object recognition is a key step in computer vi- 

sion. Most model-based recognition systems work 
by hypothesizing matches between scene features and 
model features, predicting new matches, and verifying 
or changing the hypotheses through a search process. 
Geometric hashing [12] has been proposed as an alter- 
nate approach for object recognition. However, paral- 
lel techniques are needed to use geometric hashing in 
real-time applications. 

In geometric hashing, a set of models is specified 
using their feature points [12]. For each model, all 
possible pairs of feature points are designated as a ba- 
sis set. The coordinates of the features points of each 
model are computed relative to each of its basis. These 
coordinates are then used to hash into a hash table. 
The entries in the hash table comprise of (model, basis) 
pairs and are precomputed as follows: using a chosen 
basis, if a feature point in a model hashes into a bin, 
then the model and the basis are recorded in the bin. 



In the recognition phase, an arbitrary pair of feature 
points in the scene is chosen as a basis and the coordi- 
nates of the feature points in the scene are computed 
relative to this basis. The new coordinates are used 
to hash into the hash table. Votes are accumulated 
for the (model, basis) pairs stored in the hashed loca- 
tion. The pair winning the maximum number of votes 
is chosen as a candidate for matching. The execution 
of the recognition phase corresponding to a basis pair 
is termed as a probe. 

There have been some prior efforts in parallelizing 
geometric hashing on HPC platforms [4, 16, 18]. A 
major problem in these implementations is that their 
performance degrades significantly due to the irregu- 
lar communication in accessing the hash bins and in 
voting because the hash table and the vote boxes are 
distributed among the processing nodes. We refer to 
the congestion in accessing the bins as well as in voting 
as "memory congestion problems". 

Recently, configurable computing ideas [3, 8] have 
shown attractive speedups for many applications. 
They offer large scale parallelism and highly cus- 
tomized solutions. Field Programmable Gate Arrays 
(FPGAs) are becoming one of the major configurable 
computing devices which offer low development cost, 
rapid prototyping, and user controlled reconfigurabil- 
ity. 

In this paper, we develop a design technique to par- 
allelize the probe operation on an FPGA-based plat- 
form. We first transform the hash table which contains 
symbolic data into a "bit-level" representation. By 
regularizing the data flow and exploiting large scale 
bit-level parallelism in hardware, our design avoids 
the memory congestion problems. This leads to high 
performance. Since we employ a bit-level hash table, 
there is no hash bin access between the processing 
nodes although the hash table is distributed among 
the processing nodes. All operations are performed 
locally in each processing node except for finding a 
maximum value over the processing nodes. Further- 
more, we parameterize the application as well as the 
device characteristics. Based on these parameters, we 
derive an area-time efficient design. The implementa- 
tion is simplified using a modular approach. 

We have synthesized our design using Xilinx 4062 
devices. Using a clock rate of 10MHz, the execution 
time for the probe operation on a scene consisting of 
256 feature points is estimated to be 1.65 milliseconds 
using 32 FPGAs and 128M bytes of memory. In 
this design, as in the earlier experiments, we assume 
that the model database has 1024 models and each 
model is represented using 16 feature points. For the 

sake of comparison, a parallel algorithm was imple- 
mented on a 32-node IBM SP-2. In our implementa- 
tion, each processing node has the entire set of vote 
boxes to reduce the communication cost and to re- 
duce memory congestion. However, the hash table 
was partitioned such that each hash bin is evenly dis- 
tributed among the processing nodes. This balances 
the load on the processing nodes during the voting 
process. All operations are performed locally except 
for finding the global maximum. Using between 64 
and 512M bytes of memory in each processing node 
operating at 66MHz, the execution time was about 40 
milliseconds. In earlier implementations, the same 
probe operation was performed in 240 milliseconds 
on a 32K-node CM2 [16] and in 382 milliseconds on 
a 32-node CM5 [18]. 

The organization of the paper is as follows. In Sec- 
tion 2, configurable computing is briefly introduced. 
The geometric hashing technique is outlined in Sec- 
tion 3. Section 4 discusses parallelization of geomet- 
ric hashing. In Section 5, implementation details are 
shown and the performance of the proposed design is 
compared with earlier results. Concluding remarks are 
made in Section 6. 

2    Configurable Computing 
Configurable computing has recently gained much 

attention with the promise of delivering an order of 
magnitude performance improvement over general- 
purpose processors. The paradigm of computing in 
space (i.e., a series of computations on several func- 
tional units), as opposed to computing in time (i.e., a 
series of computations executed in sequence on a sin- 
gle functional unit), is being actively explored. There 
are several directions in which research is being carried 
out to realize the potential of configurable computing. 

The idea of a VLSI array of processors overlaid with 
a reconfigurable bus system, and an abstract model 
based on this architecture was proposed in [15]. Based 
on this initial work, several abstract models of recon- 
figurable architectures and fast parallel algorithms for 
many problems have been described in the literature. 
For example, efficient algorithms for fundamental data 
movement operations [15], sorting [11], and image pro- 
cessing [10] have been developed on the reconfigurable 
meshes. There have been several prototype implemen- 
tations of such abstract models. Such architectures 
include Abacus [2] and YUPPIE [14]. 

Recently, the advent of Field Programmable Gate 
Arrays (FPGAs) has given rise to new opportunities 
in the configurable computing area. Traditionally, FP- 
GAs have been used for rapid prototyping and emu- 



lation. The main bottleneck in using these devices 
as configurable computing engines has been the time 
for reconfiguration. Current and future generation de- 
vices such as CLAy, XC6200, DPGA etc. alleviate 
the above problem by providing partial and dynamic 
reconfigurability [8]. In these devices, it is possible 
to modify the configuration of a part of the device 
while the configuration of the remaining part is un- 
changed. Some devices permit this partial reconfig- 
uration even while other logic blocks are performing 
computations. Unlike such fine-grain devices, coarse 
grain devices in which multiple contexts of the con- 
figuration can be stored in the logic block and the 
context is dynamically switched have been proposed 
(for example, see [8]). Also, there are efforts under 
way to develop coupled architectures in which a re- 
configurable array and a processor core cooperate on 
a computational task, exploiting the strengths of both 
architectures (for example, see [9]). Wormhole run- 
time reconfiguration has been proposed in [1]. In this 
approach, as the stream of data moves through the 
reconfigurable hardware, it rapidly creates and modi- 
fies datapaths and computing resources along the way. 
There have been some efforts to exploit dynamic re- 
configuration [3, 13]. In these, the connections are 
configured based on the input data or the intermedi- 
ate result of the computation. 

Configurable computing provides the ability to re- 
define the hardware/software boundary in computing 
systems. This paradigm change results in new com- 
putation models, new programming methods, and new 
approaches to implementation of applications. Some 
of the greatest gains in this field may well come from 
providing appropriate abstractions of this technology 
to algorithm developers and compiler designers to al- 
low them control over hardware that has not been pre- 
viously exploited [13]. 

3    Object Recognition Using 
Geometric Hashing 

In a model-based recognition system, a set of ob- 
jects is given and the task is to find instances of these 
objects in a given scene. The objects are represented 
as sets of geometric features, such as points or lines, 
and their geometric relations are encoded using a min- 
imal set of such features. The task becomes more com- 
plex if the objects overlap in the scene and/or other 
occluded unfamiliar objects exist in the scene. 

Many model-based recognition systems are based 
on hypothesizing matches between scene features and 
model features, predicting new matches, and verify- 

ing or changing the hypotheses through a search pro- 
cess. Geometric hashing, introduced by Lamdan and 
Wolfson [12], offers a different approach It can be 
used to recognize flat objects under weak perspec- 
tive. Because of such robustness, geometric hashing 
has been employed in the DARPA next-generation, 
model-based ATR (Automatic Target Recognition) 
system [6]. In the following, for the sake of complete- 
ness, we briefly outline the geometric hashing tech- 
nique. Additional details can be found in [12]. 

Figure 1 illustrates the geometric hashing algo- 
rithm. The algorithm consists of two procedures, pre- 
processing and recognition. 

Preprocessing: 
The preprocessing procedure is executed off-line 
and only once. In this procedure, the model fea- 
tures are encoded and are stored in a hash table. 
The information is stored in a highly redundant 
multiple-viewpoint way. Assume each model in 
the database has n feature points. For each or- 
dered pair of feature points in the model chosen 
as a basis, the coordinates of all other points in 
the model are computed in the orthogonal coor- 
dinate frame defined by the basis pair. Then, 
(model,basis) pairs are entered into the hash ta- 
ble bins by applying a given hash function / to 
the transformed coordinates. 

Recognition: 
In the recognition procedure, a scene consisting of 
S feature points is given as input. An arbitrary 
ordered pair of feature points in the scene is cho- 
sen. Taking this pair as a basis, the coordinates of 
the remaining feature points are computed. Using 
the hash function on the transformed coordinates, 
a bin in the hash table (constructed in the pre- 
processing phase) is accessed. For every recorded 
(model,basis) pair in the bin, a vote is collected 
for that pair. The pair winning the maximum 
number of votes is taken as a matching candi- 
date. The execution of the recognition phase cor- 
responding to one basis pair is termed as probe. 
If no (model,basis) pair scores high enough, an- 
other basis from the scene is chosen and a probe 
is performed. 

Note that, the basis set can be chosen as a set of 
single points, point pairs, or triple points depending 
on the required functionality for occlusion, rotation, 
translation, and perspective. The object features can 
also be represented by other geometric features such 
as lines [17]. 
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Figure 1: Illustration of the geometric hashing technique. 

4 Parallel Geometric Hashing on an 
FPGA-based Configurable Comput- 
ing Platform 

In this section, we describe our parallel technique 
to implement the recognition phase. We first explain 
our bit-level hash table. Then, our parallel probe al- 
gorithm and its FPGA-based design are proposed. Fi- 
nally, an analysis of our design is described. 

We will not elaborate on parallelizing the prepro- 
cessing phase, since it is a one time process and can 
be carried out off-line. In the following, we ignore the 
initialization costs, such as loading the scene points 
to the processors and loading the hash table into the 
processor array. These assumptions were also made in 
the previous algorithms and in the implementations 
reported in [4, 16, 18]. 

The major difficulty in parallelizing the probe op- 
eration is that the performance depends on the parti- 
tioning and distribution of hash bins, the distribution 
of the votes generated, and the total number of votes 
generated. We refer to the congestion in accessing the 
bins as well as in voting as "memory congestion prob- 
lems". 

There have been several prior efforts in parallelizing 

the geometric hashing algorithms [4, 16, 18]. The im- 
plementations in [4, 16] have been performed on SIMD 
hypercube-based machines. A major problem in both 
the implementations is the requirement of large num- 
ber of processing nodes. In [4], the number of pro- 
cessing nodes used is the same as the number of bins 
in the hash table. Thus, 0(Mn3) processing nodes 
are needed. In implementations reported [16, 18], the 
(model, basis) entries in a hash bin were represented 
as a linked list. Note that, the number of such entries 
in each hash bin can vary over the hash bins. By par- 
titioning the hash table and the vote boxes statically 
among the processing nodes, the memory congestion 
in bin access as well as in voting significantly degrades 
the performance . In [18], these problems were solved 
using a sort-based approach. This approach handles 
congestion in bin access as well as in voting. How- 
ever, additional overhead caused in implementing such 
a technique makes it attractive only if the computa- 
tional cost associated with accessing the hash bin and 
processing the generated votes is high. 

4.1     Bit-level Hash Table 
In this paper, we propose a simple memory struc- 

ture which can be accessed in parallel without memory 



congestion. By regularizing the data flow and exploit- 
ing a high degree of bit-level parallelism in hardware, 
large speedup is achieved. For the sake of explana- 
tion, we assume that there are no multiple entries of 
the same (model, basis) pair in a hash bin. Note that, 
the number of (model, basis) pairs recorded in a hash 

bin is upper bounded by —" "~   . 
The hash bin which has the linked list structure is 

converted to a bit-level hash bin. Figure 2 shows this 
hash table conversion. Let UID(model, basis) denote 
an unique number, between 1 and —"g i assigned 
to each (model,basis) pair. Then, each hash bin is 
converted into our "bit-level" representation of size 
M"(

2"-1) bits as follows. 

1. Initialize each of the M"(
2"-1) locations to "0". 

2. For each (model,basis) pair recorded in a hash 
bin. enter a "1" in the location 
UID(model, basis). 

The corresponding (model, basis) pair in the hash 
table is marked as '1' in the bit-level hash table. Thus, 
a hash table in which the number of entries for each 
hash bin may not be uniformly distributed across the 
hash bins is mapped to a bit-level hash table having a 
regular structure. Using this bit-level hash table, we 
can exploit a high degree of parallelism and eliminate 
the congestion in hash bin access. 

Bin length = 512 

Hash Bin 
in [18] 

Bit-level . 
Hash Bin        11 

UID(O.O) UID(l,m) -OlD([f 

Mn(n-1)/2bits 

Figure 2: Hash table conversion. 

4.2     Parallel Probe Algorithm 
The basic strategy of our design is to access the 

Mn(n-i) kjt locations in a hash bin in parallel and 
then update the corresponding vote boxes in parallel 
(See Figure 3(a)). Thus, we can perform a probe op- 
eration without any memory congestion. Note that 
a single FPGA chip may not have enough number of 

Combinational Logic Blocks (CLBs) to handle the bit 
streams in parallel. Therefore, multiple FPGA chips 
are required. Finding the maximum among the vote 
boxes distributed in multiple FPGA chips is performed 
in 2 steps: find the local maximum in each FPGA chip 
and then find the global maximum, across the FPGA 
chips. 

To obtain a modular design, we partition our de- 
sign into three modules: pre-processing module, main- 
processing module, and post-processing module. The 
pre-processing module generates the bin address of the 
bit-level hash table. Given (x,y), the coordinates of 
a scene point, the co-ord transformer first converts it 
into basis-relative coordinates (u,v). Then, the bin 
address generator converts (u, v) into a corresponding 
hash bin address. These two operations can be easily 
implemented using table look-up even though they in- 
volve complex arithmetic operations. Then, the main- 
processing module accesses the hash table using the 
computed bin address and detects local maximums in 
each FPGA chip. Finally, a global maximum across 
the FPGA chips is detected by the post-processing 
module using a comparator tree (See Figure 3(b)). 
Since parallelism is exploited in the main-processing 
module, in the following, we focus on designing that 
module. 

A basic unit for the main-processing module con- 
sists of a pair of FPGA and local memory modules, 
and is denoted as Processing Element (PE). In gen- 
eral, trade-offs between area and time are possible 
when a specific function is implemented in hardware. 
Especially, the available sizes of Commercial Off-The- 
Shelf (COTS) devices may not match well with the 
basic unit of our design. Thus, the virtual PEs in our 
design need to be mapped onto physical PEs which 
can be implemented using COTS devices. To derive 
an area-time efficient design using COTS devices, we 
define parameters which characterize our design with 
respect to area and time (See Figure 4). Using P 
PEs, our design accesses PN bits of the hash table 
in parallel.   Since Mn{^~1) bits need to be accessed 

in each hash bin and since typically, —"v?" ' > PN, 
the number of time multiplexing required to map vir- 
tual PEs to physical PEs is \t = M^1)l- Details of 
the time multiplexing to realize an area-time efficient 
design using COTS devices are described in the next 
section. 

4.3    Design Analysis 
The execution time for a probe using P PEs can 

be analyzed as follows. Throughout this paper, we 
assume that a memory access and an arithmetic or 
logic operation (such as ADD,  MUX,  COMPARE) can be 
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Figure 3: Parallel probe algorithm and its FPGA-based design. 

performed in unit time. The hash bin address can 
be generated in 0(1) times using table look-up. The 
generated hash bin address can be distributed to P 
PEs in 0(\ogPl) time. The hash bin accesses for 
5 — 2 feature points can be performed concurrently 
with the operation to detect local maximums from 
the preceding hash bin accesses. Thus, the time 
to detect the local maximums over t multiplexing is 
(5 - 2) x t + log N = 0{^jf + log N). The hash bin 
access and the operation to detect a local maximum 
are pipelined. The final operation to detect a global 
maximum can be performed in O(logP) time. 

Theorem 1 Given a model database having M mod- 
els where each model is represented using n feature 
points, a probe on a scene consisting of S feature 
points can be performed in 0(Sp£   + log TV + log-P) 

'All logarithms in this paper are to base 2. 

time on an FPGA-based platform having P PEs, 
1 < P < Mn^~1), where N denotes the width 
of FPGA-memory datapath in a PE. 

5    Implementation Details and Perfor- 
mance Estimate 

In this section, we first discuss various issues in im- 
plementing the design technique developed in Section 
4 on an FPGA-based platform. Then, we describe a 
design using Xilinx 4062 FPGA devices. Our design 
is motivated to achieve large speedup for typical size 
of images and models used by the vision community. 
We have chosen not to perform device dependent op- 
timizations to improve performance. Figure 5 shows 
our development environment. We have synthesized 
our design using Synopsis FPGA compiler. Place and 
route was performed using Xilinx tools (XACT Devel- 
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Figure 4: Parameters used for deriving an area-time efficient design. 

opment System) to create a configuration file for an 
FPGA on a Sun Ultra Enterprise. Then, configuration 
file is downloaded onto the FPGA development board 
which consists of FPGAs and memory modules. The 
board is connected to a PC through PCI Local Bus. 

Sun Ultra Enterprise PC (Pentium Pro, 200MHz) 

Synopsys 

Configuration 
File      , 

FPGA Development Board 
FPGA Compiler 5 

1 ' 
FPGAs 1 Memories 

I s 
XACT 

System 
~.,     .».....-: ~, -"■"•"" ——- 

i 

 ■--*—linn r 
7                     V                 PCrLöcarBus   A 

Figure 5: Our development environment 

For the sake of illustration and evaluation of the 
resulting design, we consider a typical scenario as fol- 
lows: We used a synthesized model database contain- 
ing 1024 models. Each model consists of 16 randomly 
generated feature points in 2 dimensions. This results 
in a hash table having 4 x 220 entries. These feature 
points were generated according to a Gaussian distri- 
bution with zero mean and unit standard deviation as 
in [16, 18]. Similarly, 256 scene points were synthe- 
sized using a normal distribution. The equalization 
technique in [16, 18] was applied to quantize the trans- 
formed coordinates, i.e., for each transformed point 
{u,v), the following hash function (where a denotes 
the standard deviation of the set of model points) is 
applied [18]: 

f(u,v) = (1 — e     3<r2   ,atan2(v,u)) 

According to constraints imposed by Commercial 

Off-The-Shelf (COTS) devices, we first determine 
both the structure of each PE and the configuration of 
the PEs to synthesize an area-time efficient solution. 
Based on the configuration of the PEs in the main- 
processing module, the logic for the pre-processing and 
post-processing modules are determined. 

5.1     Design Trade-offs 
To illustrate feasibility of implementation and 

demonstrate resulting speedup, we assume that Xilinx 
4062 FPGA chips and 512A" x 32 bit memory modules 
are used for the implementation. The scenario consid- 
ered above results in a hash table having 8Ä' hash 
bins [16, 18]. To represent the same hash table us- 
ing our bit-level design, we need 8A x 120A bits (See 
Figure 6 (a)). For the sake of explanation, let MEM 
denote the number of memory modules needed to store 
the hash table. To implement this bit-level hash table 
with commercially available 512A' x 32 bit memory 
modules, MEM, N, and t must satisfy the following 
constraints: 

• 512A x 32 bits x MEM > 8A' x 120A' bits, 

512K > 8A', and 

• 32 bits x MEM > 120K
t 

biu > PN bits. 

We can implement 64 vote boxes and the logic 
to find a local maximum among the vote boxes in 
an FPGA. Thus, the width of FPGA-memory data- 
path, N, becomes 64 and this amount of parallelism 
is achieved in a PE. 

From the above constraints, a feasible configura- 
tion is MEM = 60, t = 64, and P = 30. Designs 
with large P (> 30) are not area efficient due to large 
number of memory modules. Also, note that the num- 
ber of memory modules is 60 and the number of PEs 
is 30. Thus, two 512A' x 32 bit memory modules are 
assigned to each PE to support 64-bit parallelism. 



Figure 6 shows the actual mapping of the hash 
table onto the memory modules in our design. In 
this example, the size of the bit-level hash table is 
8A' x 120A' bits. A smaller sub-table whose size is 
8A" x 4A' bits is assigned to a PE (See Figure 6 (b)). 
Since the width of a hash bin in the sub-table is 
4A' bits and A* = 64 bits can be read from the sub- 
table simultaneously, one hash bin access results in 64 
reads to the memory module. When we map the sub- 
table into an actual memory module, a column major 
order is used. Thus, the first 8A' x 64 bits are placed 
in the beginning of the memory module. The next 
8A' x 64 bits are placed immediately after this (See 
Figure 6 (c)). Figure 6 (c)). 

Mn(n-iy2= 120 Kbits 

MEMORY S9, SO 

mfmiggij* 

b8K 1 *>8K.2 b8K. 3 &8K.64     I-'-;,' 

64 bits 
b8K. 64 

4 Kbits 

(b) 

64 bits 

(c) 

Figure 6: Memory organization, (a) Bit-level hash 
table, (b) Memory module (sub-table), and (c) The 
sequence of hash bins in a memory module. 

Some details of the FPGA implementation of a PE 
is shown in Figure 7. It consists of 64 vote boxes, eight 
8-to-l multiplexors, and the logic to find a local max- 
imum. The logic to find the local maximum consists 
of 8-input comparator tree and logic to update the 
local maximum. When a hash bin address is gener- 
ated, 64 bits of the hash bin are fed into FPGAs from 
the memory modules. The corresponding vote boxes 

count the number of Ts. Once the voting operation 
is completed, the votes are stored in registers and are 
multiplexed to be fed into the comparator tree. Using 
the comparator tree, a maximum is found and is com- 
pared with the previous local maximum. If necessary, 
the local maximum is updated. In the design of the 
PE, we can also use a 64-input comparator tree to find 
the local maximum directly from 64 vote boxes. Since 
the execution time for the voting operation is longer 
than that for finding the local maximum, we multiplex 
the votes in the registers and feed them to a smaller 
comparator tree. Thus, we can reduce the amount of 
logic to find the local maximum. 

From Hash Table (Memory Chips) 

- 64 bits i 
Vote Box 

Register 

Figure 7: FPGA-based implementation of a PE. 

For the above configuration, the logic for finding a 
maximum globally across the 30 PEs can be imple- 
mented in a single FPGA. Also, the generation of the 
transformed co-ordinates as well as hashing the ad- 
dresses can be performed using 1 FPGA chip by using 
table look-up. In the above design using 30 PEs, since 
the total number of PEs is relatively small, the gen- 
erated hash bin address is distributed directly over a 
bus to each PE rather than using a tree topology. 

5.2     Performance Estimate 
Our FPGA-based design has been developed using 

VHDL and synthesized using Synopsys synthesis tools 
to generate a gate-level design. Then, Xilinx devel- 
opment tools were used for placing and routing our 
design using FPGAs.  Since all the PEs are identical 
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except for the contents of memory, we synthesized a 
PE. 

Our design runs at a clock rate of 10MHz and 
the estimated execution time for a probe is 1.65 
milliseconds using 32 PEs. Each PE consists of an 
FPGA and a local memory. Two additional FPGA 
chips and memory modules are required to implement 
the pre- and post-processing modules. 

For the sake of comparison, a sequential algorithm 
has been implemented using C. On an UltraSPARC 
Model 140 (143MHz clock, 128M byte memory, 7.44 
SPECintßb, 10.40 SPECfp.95), it takes about 300 
milliseconds to perform a probe operation. We im- 
plemented a parallel algorithm on a 32-node IBM SP- 
2. Each node of SP-2 had 66MHz processors and 
64 up to 512M bytes of memory. The performance 
benchmarks of the processors were 3.14 SPECint 95 
and 7.50 SPECfpßh. In our parallel algorithm, we 
evenly distribute the hash table (which is vertically 
partitioned) to 32 processing nodes. However, un- 
like the previous implementations [18], each processing 
node has the complete set of vote boxes. Initially, all 
scene points are sent to each processing node. Each 
node performs a voting operation locally using the dis- 
tributed hash table. The results of voting are sent to 
other processing nodes using an "all-to-all" commu- 
nication so that all the data corresponding to a vote 
box is combined and stored in a single PE. Based on 
the collected votes, local maximums are computed in 
each processing node and a global maximum is com- 
puted over the 32 processing nodes. The implementa- 
tion on SP-2 was performed using MPI. The execution 
time was about 40 milliseconds. Using one process- 
ing node of SP-2, the execution time was about 500 

milliseconds. Therefore, our FPGA-based solution 
can achieve a speedup of close to 176 and 24, respec- 
tively. A comparison with parallel implementations 
on HPC platforms is shown in Figure 8. 

Note that, the memory requirement per PE in our 
design is only 4M bytes, whereas the size of local mem- 
ory in each node of SP-2 is between 64 and 512M bytes. 
Also, our design assumes 10MHz clock while the pro- 
cessors in SP-2 run at 66MHz. 

Although we use 32 PEs, our design is scalable. 
Note that, as the number of PEs increases, the re- 
quired number of time multiplexing decreases. How- 
ever, the internal structure of each PE, such as the 
width of FPGA-memory datapath, is not affected by 
the number of PEs used. The upper limit on the num- 
ber of PEs is obtained by setting t = 1 (no time mul- 
tiplexing). As we mentioned earlier, however, designs 
with large P are not area efficient due to the number 
of memory modules used and low FPGA utilization. 

Previously, we have assumed that in any hash bin 
there is no more than one (model, basis) pair. Thus, 
we need only one bit to mark UID(model, basis) in our 
bit-level hash bin. However, if there are more than one 
identical (model, basis) pair in a hash bin, then our de- 
sign can be easily modified to handle this. To allow K 
identical (model, basis) pairs, flog A'] bits are needed 
for each UID(model,basis) in a bit-level hash bin. 
The memory size of the hash table also increases by a 
factor of [log A']. To generate the bit-level hash bin, 
the number of identical (model, basis) pairs is counted 
and is stored in the corresponding UID(model, basis) 
location. The design for vote boxes needs to be mod- 
ified. An additional [logA']-bit adder is required for 
each vote box. 

6    Conclusion 
We have shown an area-time efficient FPGA-based 

design for the probe step in geometric hashing. In 
our design, we first transform a hash table which con- 
tains symbolic data into a bit-level representation. By 
regularizing the data flow and exploiting bit-level par- 
allelism in hardware, our design avoids memory con- 
gestion. In addition, the implementation is simplified 
using a modular approach. 

Performance estimates are very encouraging. Given 
a model database having 1024 models where each 
model is represented using 16 feature points, a probe 
operation on a scene consisting of 256 feature points 
can be performed in 1.65 milliseconds on an FPGA- 
based platform (32 FPGAs and 128M bytes of mem- 
ory). This result does not assume any distribution of 
hash bin lengths or scene points. For the same probe 



operation, a parallel algorithm on a 32-node IBM SP-2 
required 40 milliseconds, and the earlier implementa- 
tion required 240 milliseconds on a 32K-node CM2 
and 382 milliseconds on a 32-node CM5. 

The work reported here is part of the USC MAARC 
(Models, Algorithms, and Architectures for Recon- 
figurable Computing) project for algorithmic config- 
urable computing [13]. In this project, characteris- 
tics of state-of-the-art configurable hardware are ab- 
stracted to capture their capabilities. Using such rep- 
resentations of configurable devices, system-level mod- 
els that allow the development of new algorithms for 
mapping applications on configurable systems are for- 
mulated. Using the models and metrics for config- 
urable computing, high-performance algorithms for 
these architectures are designed. 
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Abstract 
Most intermediate and high-level vision tasks ma- 

nipulate symbolic data. A kernel operation in these 
vision tasks is to search symbolic data satisfying cer- 
tain geometric constraints. Such operations are data- 
dependent and their memory access patterns are irreg- 
ular. 

In this paper, we propose a fast parallel design 
for symbolic search operations using configurable hard- 
ware. Using a pointer array and a bit-level index ar- 
ray, we manipulate the symbolic data and show high 
performance can be achieved. Depending on the input 
data, a corresponding search window is calculated and 
symbolic search operations are performed in parallel. 
Performance estimates using 16 Xilinx XC6216s and 
memory modules are very promising. Given 3519 line 
segments (extracted from an 1024 x 1024 pixel image), 
the operation can be performed in 1.11 milliseconds 
on our FPGA-based platform.. On a Sun UltraSPARC 
Model 140, the same operation implemented using C 
takes 690 milliseconds. Although we illustrate our de- 
sign for a specific search operation, our design tech- 
nique can be applied to related search operations with 
minor modifications. Also, it can be ported to other 
FPGA devices. 

'This research was performed as part of the MAARC 
(Models, .Algorithms, and architectures for fleconfigurable 
Computing) project. This work is supported by DARPA Adap- 
tive Computing Systems program under contract no. DABT63- 
96-C-0049 monitored by Fort Hauchuca. 

1     Introduction 
Vision systems consist of low, intermediate, and 

high-level tasks, each with different computational 
characteristics. Over the years, low-level vision tasks 
have been parallelized using parallel machines or cus- 
tom VLSI. Since these tasks are characterized by reg- 
ular, local, and pixel-based computations, such vision 
tasks can be easily parallelized [1, 2, 22]. However, in 
parallelizing intermediate- and high-level vision tasks, 
additional issues must be considered: 

• The computations are performed on symbolic data 
(For example, the image data is represented by 
points, lines, and area). 

• The computations are highly data dependent (For 
example, the size and the shape of a search win- 
dow depend on the input data). 

Many vision systems require real-time performance 
so that they can interact with humans or invoke 
other machines in real-time. For these vision sys- 
tems, high performance computing machines such as 
Cray T3E, IBM SP-2, and Intel Paragon have been 
used [23]. However, because of the irregular nature of 
intermediate- and high-level vision tasks, the speed- 
ups achieved on these machines are low. 

Recently, configurable computing ideas [5, 9] have 
shown attractive speed-ups for many applications. 
They offer large scale parallelism by exploiting cus- 
tomized hardware. Field Programmable Gate Arrays 



(FPGAs) are emerging as one of the major config- 
urable devices which offers rapid prototyping, user 
reconfigurability. and low development cost. How- 
ever, most research efforts have focused on map- 
ping regular and non data-dependent applications 
such as convolution operations, median filtering, and 
FFT [2, 6. 20. 22] onto such devices. Parallelizing sym- 
bolic search operations which are irregular and data- 
dependent operations on FPGAs is challenging since 
non-trivial design techniques are required. 

In this paper, we propose a parallel and config- 
urable solution for a kernel operation in symbolic vi- 
sion computations. We develop a design technique for 
symbolic search, a kernel operation, which search for 
symbolic data satisfying certain geometric constraints. 
For example, in perceptual grouping [12], a set of 
symbolic data satisfying certain geometric constraints 
are grouped to form structural hypotheses. In im- 
age matching, correspondences between symbolic data 
extracted from two different images are determined 
based on geometrical relationships [18]. 

In our design, we employ a pointer array and a 
bit-level index array to manipulate the symbolic data 
and to achieve high performance. Depending on the 
input data, a corresponding search window is gen- 
erated and the symbolic search operations are per- 
formed in parallel. Although the symbolic search 
operation involves multiplication and division oper- 
ations, we obtain an area-efficient design by employ- 
ing a lookup table. Since the computations are highly 
data-dependent, we employ a sophisticated load distri- 
bution scheme to realize load balancing. Furthermore, 
in a typical vision system, various symbolic search op- 
erations are performed. Our design can be reconfig- 
ured dynamically to suit these operations. To the best 
of our knowledge, there has been no previous work in 
mapping symbolic vision computations onto FPGAs. 

We have synthesized our design using Xilinx 
XC6216 devices. Using a 10MHz clock, the esti- 
mated execution time for symbolic search on an im- 
age consisting 3519 line segments (extracted from an 
1024 x 1024 pixel image) is 1.11 milliseconds on a plat- 
form having 16 FPGAs. The same operation can be 
performed in 690 milliseconds on a Sun UltraSPARC 
Model 140 operating at 143MHz. 

The rest of the paper is organized as follows. In Sec- 
tion 2, configurable computing is briefly introduced. 
In Section 3, characteristics of symbolic search oper- 
ations in vision are explained. Mapping of such sym- 
bolic search operations onto configurable hardware is 
discussed in Section 4. In Section 5, implementation 
details are presented, and the performance is analyzed. 

Concluding remarks are made in Section 6. 

2    Configurable Computing 
Configurable computing has recently gained much 

attention (See, for example. Reconfigurable Architec- 
ture Workshop held annually at International Parallel 
Processing Symposium [13]). The paradigm of com- 
puting in space (i.e., a series of computations on sev- 
eral functional units), as opposed to computing in time 
(i.e., a series of computations executed in sequence on 
a single functional unit), is being actively explored. 
There are several directions in which research is be- 
ing carried out to realize the potential of configurable 
computing [10]. 

The idea of a VLSI array of processors overlaid with 
a reconfigurable bus system, and an abstract model 
based on this architecture was proposed in [19]. Based 
on this initial work, several abstract models of recon- 
figurable architectures and fast parallel algorithms for 
many problems have been described in the literature. 
For example, efficient algorithms for fundamental data 
movement operations [19], sorting [14], and image pro- 
cessing [15] have been developed on the reconfigurable 
meshes. There have been several prototype implemen- 
tations of such abstract models. Such architectures 
include Abacus [4] and YUPPIE [17]. 

Recently, the advent of Field Programmable Gate 
Arrays (FPGAs) has given rise to new opportunities 
in the configurable computing area. Traditionally, FP- 
GAs have been used for rapid prototyping and emu- 
lation. The main bottleneck in using these devices 
as configurable computing engines has been the time 
for reconfiguration. Current generation devices such 
as CLAy, XC6200, DPGA etc. alleviate the above 
problem by providing partial and dynamic reconfig- 
urability [9]. In these devices, it is possible to partially 
modify the configuration of the device. Some devices 
permit this partial reconfiguration even while other 
logic blocks are performing computations. Unlike such 
fine-grain devices, coarse grain devices in which multi- 
ple contexts of the configuration can be stored in the 
logic block and the context is dynamically switched 
have been proposed (For example, see [9]). Also, there 
are efforts under way to develop coupled architec- 
tures in which a reconfigurable array and a processor 
core cooperate on a computational task, exploiting the 
strengths of both architectures (For example, see [11]). 
Wormhole run-time reconfiguration has been proposed 
in [3]. In this approach, as the stream of data moves 
through the reconfigurable hardware, it rapidly cre- 
ates and modifies datapaths and computing resources 
along the way. There have been some efforts to exploit 



dynamic reconfiguration [5, 16]. In these, the connec- 
tions are configured based on the input data or the 
intermediate result of the computation. 

Configurable computing provides the ability to re- 
define the hardware/software boundary in computing 
systems. This paradigm change results in new com- 
putation models, new programming methods, and new 
approaches to implementation of applications. Some 
of the greatest gains in this field may well come from 
providing appropriate abstractions of this technology 
to algorithm developers and compiler designers to al- 
low them control over hardware that has not been pre- 
viously exploited [16]. 

3    Symbolic Search Operations in 
Vision 

Searching symbolic data satisfying certain geomet- 
ric constraints is a kernel operation used in many in- 
termediate and high-level vision tasks. Such an oper- 
ation can be modeled as a search operation within a 
window of the image plane. We assume that the sym- 
bolic data is already stored in the image plane before 
performing the search operations. 

To illustrate our idea, we use line segments ex- 
tracted from raw images as symbolic data [18]. The 
line segments are represented by their end-point coor- 
dinates, lengths, and orientations. Note that low-level 
processing ensures that line segments do not cross. 

Image 

for (each source line segment) 
construct search window  — 
for (each position in search window) 

if (target line segment is found) 
strore the target line segment 

Search Window tor Line Segment A 

<x,'.Yi->C-(X2'-¥*') 

--«»*"*" 

(a) Example code (b) Search Window 

Figure 1: Typical symbolic search operation. 

In Figure 1, we show a typical search operation 
for line segment A. A search operation is performed 
within a region on both sides of a source line segment 
to find target line segments for further processing. The 
search operation can refer to either a grouping process 

or an image matching process. Details of the grouping 
process and the image matching process can be found 
in [12, 18]. 

Each source line segment has a unique line number, 
LID(i), associated with it. The end-point coordinate, 
the orientation, the length, and LID(i) of a source line 
segment are given as input. Also, the width of search 
window is specified. The search operations produce 
the target line segments in the search window. For 
each target line, a record is output which consists of 
LID(i) and the mid-point coordinates of the target 
line segments in the window. 

Note that the definition of search windows is differ- 
ent for each vision task. For instance, in Line Fold- 
ing [12], a region on both sides of the source line seg- 
ment is searched to find target line segments approx- 
imately parallel to it as shown in Figure 1. In Cor- 
ner Detection [12], however, a fixed size region near 
two end-points of the source line segment is searched 
to find target line segments which may jointly form 
right-angled corners. 

4    Parallel Symbolic Search on a 
Configurable Computing Platform - 
Key Ideas 

In this section, we describe our technique for map- 
ping symbolic search operations onto an FPGA-based 
platform. To illustrate our idea, in the rest of the 
paper, the search operation refers to the operation 
shown in Figure 1(b). The major issues in paral- 
lelizing the symbolic search operation are: 1) sym- 
bolic data from an image must be manipulated, and 
2) data-dependent and irregular memory access pat- 
tern must be efficiently handled. We first describe the 
data structures used in our design to manipulate the 
symbolic data. Based on these data structures, our 
architecture for symbolic search operation is shown. 
Finally, a performance analysis of our design is de- 
scribed. 

4.1     Data Structures for Symbolic Search 
We employ two data structures: a pointer array and 

a "bit-level" index array. For an N x N pixel image , 
there is a corresponding N x N pointer array. For ev- 
ery line segment, its mid-point coordinates, (xm,ym), 
in the pixel image is mapped onto the pointer array. If 
(x, y) is a mid-point of a line segment, then a pointer 
which points the symbolic data structure of the line 
segment is stored in the corresponding entry . Such 
symbolic data structure contains information for the 
line segment as shown in Figure 2. All other locations 
in the pointer array are set to "null". 
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-► Line Segment B: (x2,y2)(x2' ^2' )• e2> d2 
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Figure 2: Symbolic search operation using a pointer array and a bit-level index array. 

A search window is constructed by using an end- 
point {x,y), the orientation (9), and the length (d) of 
the source line segment. To perform the search, we ini- 
tially create a bit-level index array which contains the 
same data as the pointer array does except pointers. 
Instead of pointers in the pointer array, the bit-level 
index array contains a "1" for the existing pointers 
(i.e., a line segment exists there) and a "0" for all null 
pointers. Since the mapping between the pointer ar- 
ray and the bit-level index array is one-to-one, all l's 
found in the bit-level index array have corresponding 
pointers to the symbolic data in the pointer array. 

4.2     An Architecture for Symbolic Search 

In the following, we ignore the initialization cost 
such as loading the bit-level index array since it is a 
one time process. We assume that the pointer array 
is maintained in a host, while the bit-level index array 
is maintained in the Processing Elements (PEs). Such 
PE consists of FPGAs and memory modules (See Fig- 

ure 3). Each local memory has a copy of the bit-level 
index array. Between the host and all the PEs, there 
are a configurable network and a FPGA (Xnet). Xnet 

can be connected to any of the PEs through the con- 
figurable network. The configurable network consists 
of Field Programmable Interconnect Devices (FPIDs). 
Xnet performs two operations: 1) configure the net- 
work, and 2) control the data transfer between the 
host and the PEs through the network. 

The basic strategy of our design is as follows. The 
host sends the source line segments to Xnet. It has a 
FIFO which stores the received source line segments 
from the host. Xnet configures the network and sends 
the line segments to PEs through the network. 

Using the source line segment, each PE performs a 
symbolic search. It generates the corresponding search 
window, accesses the bit-level index array, and con- 
verts the l's found in the search window into cor- 
responding mid-point coordinates of target line seg- 
ments. Then the mid-point coordinates are stored in a 
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Figure 3: Overall architecture for symbolic search op- 
eration. 

FIFO of the PE and are sent to Xnet through the con- 
figurable network. Xnet also has a FIFO for incoming 
data from the PEs. The host then takes the mid-point 
coordinates from Xnet and performs further process- 
ing depending on the vision task to be executed. 

Figure 4(a) shows a search window. It is a paral- 
lelogram with a four-pixel width on both sides of each 
source line segment. The search window consists of 
several rows of equal length. The search operation is 
performed for each row. We define each such row to 
be a thread and its starting coordinate in the bit-level 
index array to be the thread address. The search oper- 
ation is iterated for each thread in the search window 
and it consists of the following four steps: 

1. Calculate the thread address in the bit-level index 
array. 

2. Read the data corresponding to the thread from 
the bit-level index array. 

3. Search for "l"s in the thread. 

4. Calculate the mid-point coordinates for the de- 
tected "l"s in a thread. 

Figure 4(b) shows the organization of the PEs The 
input data, (x, y, 6, d), is sent to a PE (e.g. source line 
segment A in Figure 1). The number of threads in the 
search window is calculated from the values of 6 and 

Thread Addresses 

Number of 
Threads Thread 

T—i »jo ooo 000100] 

(a) Search window for a line segment 

Memory 
Module 

FPGA 

(x,y,d,d)o1 
Source 

Line Segment 

(XmYm) Midpoint 
Coordinate of 

Target Line Segment 

(b) Organization of the Processing Element 

Figure 4:  Search window and processing element for 
symbolic search operation. 

d. To calculate the thread address for the first row, a 
0-based lookup table is used. The table also contains 
information needed to generate thread addresses for 
subsequent rows (i.e., amount of shift per subsequent 
row). Since the symbolic search operation depends 
on (x,y,6,d) of the source line segment, arithmetic 
computations such as multiplication or division are re- 
quired to calculate the thread addresses. However, the 
size and shape of each search window is a function of 
9 and d of the source line segment. Therefore, instead 
of implementing complex logic to perform arithmetic 
using FPGAs, the thread address generation logic is 



implemented by the 0-based lookup table and a sim- 
ple logic to perform arithmetic. The implementation 
details are explained in Section 5. 

Once the thread address is generated, the thread is 
read from the bit-level index array. Using the thread 
and the thread address, the mid-point coordinate of 
the target line segment (e.g., the mid-point coordinate 
{x2m, 2/2m) of line segment B in Figure 2) is computed. 

Since the workload of a PE depends on the length 
of the line segment, a search operation assigned to a 
PE can be completed earlier or later than that of other 
PEs. In order to handle this, we employ the following 
load distribution scheme: 

1. The host scans the list of search operations and 
finds the smallest task in terms of the area of the 
search window. The smallest task (measured in 
terms of the area of the search window) is consid- 
ered as one operation unit, OU. 

2. The search windows are partitioned and assigned 
to PEs using OU as a basic unit. For example, 
if OU = 100 pixels and a search window is 350 
pixels in area, the search is assigned to 4 PEs. 

The execution time for a symbolic search opera- 
tion using P PEs can be analyzed as follows. We 
assume that a memory access and an arithmetic or 
logic operation (such as ADD, MUX, COMPARE) can be 
performed in unit time. Let S denote the total num- 
ber of source lines. Let A{ denote the area of the 
search window for a source line segment. Let Amin = 
min{Ai}. The serial execution time is 0(^,-=1 Ai) = 

°(Ef=i \T&~~\) 
X
 
tmin- In a multiPle PE configura- 

tion, Step 1 above takes O(S) time. Therefore, the 
execution time for a symbolic search operation of the 
proposed solution using P PEs is 

\ L t = l 
■1) X U 

where tmin is the time to execute an operation unit in 
aPE. 

The above analysis assumes that the PEs do not 
starve due to overheads in load distribution. Also, the 
above time does not include the time for collecting the 
target line segments. 

5    Implementation Details and Perfor- 
mance Estimate 

In this section, we first discuss various issues in im- 
plementing the design developed in Section 4 on an 

FPGA-based platform. Then, we describe a design 
using Xilinx 6216 FPGAs. Our design is motivated 
to achieve large speed-ups for typical size of images 
used by the vision community. We have chosen not to 
perform device dependent optimizations to improve 
performance. Figure 5 shows our development envi- 
ronment. The design was synthesized using Synopsis 
FPGA compiler. Place and route was performed using 
Xilinx tools (XACT Development System) to create a 
configuration file for an FPGA on a Sun Ultra Enter- 
prise server. The configuration file is downloaded onto 
the FPGA development board which consists of FP- 
GAs and memory modules. The board is connected 
to a PC through PCI Local Bus. 
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Development 

System 

~J? 

(Configuration 
File     J 

PC (Pentium Pro, 200MHz) 

FPGA Development Board 

FPGAs Memories 
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PCrXbcaTBus 

11 

Figure 5: Our development environment. 

Figure 6 shows the source line segments extracted 
from an 1024 x 1024 modelboard image and the cor- 
responding search windows for each line segment. The 
number of source line segments was 3519, and the sym- 
bolic search operation was performed within the region 
on both sides of each line segment with a four-pixel 
width to find target line segments. 

Both the address generator for the bit-level index 
array and the mid-point coordinate generator fit in 
one XC6216. A 512KB memory module was used to 
store the bit-level index array and the 0-based lookup 
table. 

5.1     Implementation Details 
In this section, we discuss various issues in imple- 

menting the design. We first show organization of a 
bit-level index array and a 0-based lookup table. Fi- 
nally, a design for a PE using an FPGA is shown. 

When the bit-level index array is stored in the lo- 
cal memory of a PE, the shape of the search win- 
dow is considered. Figure 7 shows the shapes of the 
search windows depending on 6. To ease the mem- 
ory access patterns of the search windows, two bit- 
level index arrays are employed in each PE: one of 



Figure 6: Extracted line segments from an 1024 x 1024 Modelboard image (left) and search windows generated 
by a symbolic search operation (right). 

them, BLIR, stores the index array in row-major or- 
der and the other, BLIc, stores it in column-major 
order. If 45° < 9 < 135°, the row-major index ar- 
ray is used to access the threads. If 0° < 9 < 45° 
or 135° < 9 < 180°, the column-major index array is 
used. Note that the thread which was defined in Fig- 
ure 4(a) is defined to be a vertical line segment in the 
case of column-major index array. 

- Thread 
A 

(a) (b) 

Figure 7: Shapes of search windows depending on 6, 
(a) 45° < 9 < 135°, (b) 0° < 9 < 45° or 135° < 9 < 
180°. 

Another design issue is organization of the (?-based 
lookup table. For a given line segment, the height and 
the width of its search window is determined using 9 
and the length of the line segment. The search win- 
dow is stored in the index array. To read the threads 
in a search window, thread addresses are calculated 

using the 0-based lookup table and a simple logic for 
arithmetic. 

Second Thread Address 1 First Thread Address 

: A. 

. .±j A 

Description 

x axis offset from the end-point of a line segment to the beginning of the first thread 

Ax 

Ay 

2A, 

M 

y axis offset from the end-point of a line segment to the beginning of the first thread 

Amount of shift per subsequent thread along x axis 

Amount of shift per subsequent thread along y axis 

Distance from the end-point of a tine segment to the window boundary 

Mask 

Figure 8:   Parameters stored in the 0-based lookup 
table. 

Figure 8 shows the parameters of the #-based 
lookup table. For a given 9, the first thread address is 
calculated by adding the end-point coordinate, {x,y) 
to the offset, (Ox,Oy). This offset is stored in the 
lookup table. Note that thread addresses can be com- 
puted by simply adding the amount of shift per sub- 
sequent thread, (Ar, Ay). Since (Ar, Ay) depends on 
the value of 9, we also keep the values of (Ax,Ay) 



in the 0-based lookup table. We can notice that for 
a thread in the row-major index array, Ay = 1 and 
Ar depends on 9 (See Figure 7(a)). However, for the 
thread in the column-major index array, Ar = 1 and 
Ay depends on 9 (See Figure 7(b)). To compute the 
number of threads (i.e., the height of the search win- 
dow), the height of a line segment, d, and A,- are used. 

Finally, in the lookup table, a mask, M, is stored. A 
32-bit data bus was used between the FPGAs and the 
memory modules in our design. However, the length of 
the threads varies depending on 9. For a given thread 
address, a 32-bit data is read from the bit-level index 
array and a thread is extracted by masking the data 
using M. 

Using the #-based lookup table and two bit-level 
index arrays, the implementation details of a PE are 
shown in Figure 9. 

A source line segment comes from Xnet through 
the configurable network. The end-point coordinate 
(x,y), the orientation (9), and the length (d) of the 
source line segment are fed to a PE. To compute the 
first thread address, the offset, (Ox,Oy), is added to 
the end-point coordinate, (x,y). The 9 test unit gen- 
erates an additional bit for the first thread address 
to decide on one of the two bit-level index arrays to 
be accessed. Using this thread address, the bit-level 
index array is accessed and the data is fed to the 
mask operation unit. To obtain a thread, the data 
from the bit-level index array is masked out by us- 
ing M. If the thread has a '1', the distance between 
the thread address and the '1' in the thread, (Aactj), 
is produced. Note that to obtain the mid-point of a 
target line segment, the thread address is used. By 
adding Aacij to the thread address, the mid-point co- 
ordinate, (xm, ym), is finally extracted and is fed to a 
FIFO. 

To read the next thread, its address is generated 
by adding the amount of shift per subsequent thread, 
(Ax, Ay), to the previous thread address. For a given 
search, the amount of computation depends on the 
number of threads. It can be computed by adding 
the length of the line segment, d, and the distance 
from the end-point of a line segment to the boundary 
of the search window, (2A,). The number of threads 
determines the number of iterations. 

We have explained our design in the case of us- 
ing the threads in the row-major index array. For a 
thread in the column-major index array, x and y of 
the end-point coordinate are exchanged depending on 
9. If 0° < 9 < 45° or 135° < 9 < 180°, we need 
to exchange them to access the correct address in the 
column-major index array.   The 9 test unit gives a 

control signal for the exchanger. 

5.2    Performance Estimate 
Our FPGA-based design has been developed using 

VHDL and synthesized using Synopsys synthesis tools 
to generate a gate-level design. Then, Xilinx develop- 
ment tools were used for placing and routing our de- 
sign using FPGAs. Since all the PEs are identical, we 
synthesized a PE. Xilinx XC6216 devices were used. 
Our design operates using a 10MHz clock and the ex- 
ecution time for the symbolic search operation with 
3519 source line segments is estimated as 1.11 mil- 
liseconds on our 16-PE FPGA-based platform. Each 
PE consists of one XC6216 and one memory module 
of size 512KB. One additional FPGA is used for con- 
trolling the configurable network and the FIFOs. We 
have assumed that the 0-based lookup table and the 
bit-level index arrays are already stored in the memory 
module. 

For the sake of comparison, a sequential algorithm 
was implemented using C. On a Sun UltraSPARC 
Model 140 (143MHz clock, 128MB memory, 7.44 
SPECint_%, 10.40 SPECfp.%), it took 690 millisec- 
onds to perform the search operation. We used "gcc" 
compiler with level-2 optimization (-02) for compiling 
our sequential code. Therefore, the speed-ups of close 
to 622 can be achieved (See Figure 10). The same 
operation took 1820 milliseconds on an IBM RS/6000 
(67MHz clock, 32MB memory, 3.14 SPECintßb and 
7.50 SPECfpßh). 

Note that, the memory requirement in our design 
is only 8MB, whereas the size of the main memory 
in a Sun UltraSPARC was 128MB. Also, our design 
operates at 10MHz while the UltraSPARC operates 
at 143MHz. 

Platform 
Execution Time 

(for 3519 Line Segments) 

IBM RS/6000 (67 MHz, 32 MB) 1820 msec 

Sun UltraSPARC (143 MHz, 128 MB) 690 msec 

Our Design using 16 PEs (10 MHz, 8 MB) 1.11 msec 

Figure 10: Performance comparison between our 
FPGA-based implementation and a serial implemen- 
tation on general-purpose machines. 
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6    Conclusion 
We have shown a configurable hardware design for 

parallelizing a symbolic search operation which is a 
kernel operation in intermediate- and high-level vision. 

We first transformed the symbolic data structure 
into a bit-level representation. Then, depending on 
the input data, search windows were generated and 
the search operation was performed in parallel using 
multiple FPGAs and memory modules. Performance 
estimates of our design are very encouraging. Given 
3519 line segments, speed-ups for the symbolic search 
operation using 16 PEs was close to 622 over a sequen- 
tial implementation on Sun UltraSPARC Model 140. 

Although we illustrated our design for a specific 
search operation, our design technique can be ap- 
plied to many symbolic search operations in interme- 
diate and high-level vision to satisfy real-time perfor- 

mance requirements. Examples of such vision tasks 
are hypothesis verification, image matching, percep- 
tual grouping, and stereo matching, among others. 

The work reported here is part of the USC MAARC 
(Models, Algorithms, and Architectures for Recon- 
figurable Computing) project for algorithmic config- 
urable computing [16]. In this project, characteris- 
tics of state-of-the-art configurable hardware are ab- 
stracted to capture their capabilities. Using such rep- 
resentations of configurable devices, system-level mod- 
els that allow the development of new algorithms for 
mapping applications onto configurable systems are 
formulated. Using the models and metrics for con- 
figurable computing, high-performance algorithms for 
these architectures are designed. 
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The Problem 
Conventional FPGAs are fine-grained architectures, 

mainly designed for implementing bit-level tasks and ran- 
dom logic functions. Their performance is limited for 
computationally demanding applications over large word 
length data. A highly promising avenue that is being ex- 
plored by many research groups is coarse-grained config- 
urable architectures. These architectures are datapath- 
oriented structures and consist of a small number of pow- 
erful, word-based configurable processing elements (PEs). 
Such architectures can result in greater computational effi- 
ciency and high throughput for coarse-grained computing 
tasks. 

The key for achieving high performance solutions is ef- 
ficient mapping of tasks onto above architectures. In addi- 
tion to achieving high computational rates, partitionabil- 
ity is a desirable characteristic of the mapping. Moreover, 
the computational efficiency must scale with the size of 
the architecture. Finally, it must result in a simple PE 
structure, regular/balanced dataflow and sustainable I/O 
requirements so that it can be realized in hardware. 

In this paper we show a methodology for deriving dy- 
namic computation structures for 2 dimensioned homoge- 
neous computations. Homogeneous computations lead to 
all PEs having the same functionality. The derived dy- 
namic structures match the datapath-oriented nature of 
coarse-grained architectures and lead to efficient mapping 
schemes. Our solutions require constant I/O and smaller 
amount of local memory/ PE compared with known solu- 
tions. 

Our Approach 
Our design methodology is based on a simple model of 

typical coarse-grained configurable architectures. It is a 
configurable linear array of identical powerful PEs. Adja- 
cent PEs are connected in a pipelined fashion with word 
parallel links. The data/control channels can be config- 
ured to communicate with each other at different speeds 
(datapath configuration). The PEs can also be configured 
to have different internal structures (functional configura- 

*This research was performed as part of the MAARC project. 
This work is supported by the DARPA Adaptive Computing 
Systems program under contract no. DABT63-96-C-0049 mon- 
itored by Fort Hauchuca. 

tion). This can be exploited to map heterogeneous com- 
putations [3] where different computations are performed 
by different sets of PEs. The parameters of the model in- 
clude p, the number of PEs, m the amount of total mem- 
ory in each PE and w the data word width. An external 
controller/memory system provides the required data and 
control signals and can store the results computed by the 
array. I/O operations can only be performed at the left 
and right boundary of the array. 

The key idea of our approach is dynamic datapath con- 
figuration. By configuring the datapaths, we essentially 
schedule the dataflow along the array and the computa- 
tions that each data stream participates in. The data 
operands are transported and aligned through the array 
via differential speed data channels. Furthermore, the 
functionality of the PEs is changed by reconfiguring the 
connectivity (datapaths) among the functional units and 
local memories. The design methodology consists of three 
major steps: 
• Step 1 (Dynamic datapath configuration): First, we de- 
rive a full size solution for the given algorithm. The so- 
lution does not depend on the parameters p and m. The 
derived computation structure is a linear array and deter- 
mines: 
— Basic PE structure - Speed of Data/Control channels. 
— Control/Communication scheme for the array. 
— Schedule of Data/Control streams. 
• Step 2 (Memory management): Efficient utilization of 
the local memory in the PEs can improve the solution de- 
rived in Step 1 with respect to time performance and/or 
the needed resources. Again, at this stage the solution 
does not depend on the parameters p and m. 
• Step 3 (Partitioning): Finally, partitioned schemes for 
the solution in Step 2 are derived. The solution now de- 
pends on the parameters p and m. This is a critical step 
that "fits" the solution derived in Step 2 into the target 
architecture. 

An Example: Matrix Multiplication 
To illustrate our ideas we consider N x N matrix mul- 

tiplication. Due to space limitations, we show the final 
partitioned solution. Although we assume N > p, similar 
solutions can be derived for smaller problem sizes. 

For performing C = A x B, where each matrix is of 
size N x N, p PEs with m = 2p storage in each PE are 



required. Using such an array, a subproblem of size (p x 
Ar) x (:V x p) can be solved. We can perform a N x N 
matrix multiplication using at most [A'/PI

2
 iterations of 

the subproblem. In each PE (see Figure la), p rows from a 
(p x A") submatrix of .4 commute with exactly one column 
from a (Ar x p) submatrix of B resulting in p elements of 
matrix C. 

Submatrices APXN are fed into the array through a slow 
data channel (2 clock cycles delay per PE) in column ma- 
jor order. Submatrices B,vxp are fed through a fast data 
channel (1 clock cycle delay per PE) in row major order. A 
fast output data channel is used to carry the results from 
the local memories out of the PEs. 

Two p-word banks of local memory are used for stor- 
ing the intermediate results. During each iteration, the 
contents of one memory bank are uploaded onto the 0 UT 
data channel, while the intermediate results are stored in 
the other one. The uploading mechanism is performed in 
a repetitive manner along the array, starting from the left- 
most PE. 

Using the speed differential between the data channels 
and the uploading mechanism, regular data flow and full 
utilization of the array are achieved. The regular structure 
of the computation makes the control of the array simple 
and uniform. The control signals travel through the array 
via fast and slow channels as well. 

The clock cycle is determined by the multiply-add- 
update operation performed in each PE (see Figure la). 
By pipelining the datapath for this operation, the clock 
cycle time can be decreased. \N/p~\2pN +p2 — 1 clock cy- 
cles are required to perform N x N matrix multiplication 
(p results are computed per clock cycle on the average). 
On the average, the derived structure requires 2 external 
memory accesses and p local memory accesses per clock 
cycle (i.e. one local access in each PE). 

For the sake of illustration, we apply the above ap- 
proach to perform matrix multiplication on RaPiD (a 
coarse-grained configurable architecture) [2]. Our solution 
results in full utilization of the PEs and asymptotically the 
same time performance as in [2]. However, our mapping 
uses m =: 2p memory/ PE for storing intermediate results. 
In [2] additional local memory is required for storing data 
operands as well. It is easy to verify that our solution 
reduces the total number of local memory accesses. In 
addition, it can result in potential area savings. 

Figure lb compares the memory performance of the two 
approaches. The difference in the asymptotic average # 
of memory accesses per cycle is drawn as a function of 
a = —. The value m = ap is the amount of local memory 
in each of the p PEs. Note that, a = 2 and 6 represent 
the minimum and the available size of the local memory 
in [2]. Figure lc shows the ratio of the local memory used 
in [2] over that needed in our approach as a function of 
a. Our approach reduces the overhead due to local mem- 
ory accesses. For a > 3, the solution in [2] requires less 
external memory accesses than our approach. However, 
in order to achieve this, larger amount of local memory is 

la 

Memory access performance 

Figure 1: PE Organization and memory performance. 

used (see Figure lc) resulting in increased area and control 
overheads. In addition, the time performance remains the 
same since the execution time depends on the number of 
available multipliers in both the approaches. 

Conclusions 
By using our design methodology, scalable mapping 

schemes having high computational rates can be derived. 
These schemes do not depend on the problem size and 
require constant I/O. These require lower amount of lo- 
cal memory/ PE. Also, it results in lower number of local 
memory accesses compared with known solutions. 

Our methodology can also lead to efficient mapping for 
various other matrix-oriented computations, including 2- 
D DCT and 2-D FIR. Similar techniques can be applied 
to 1-D problems as well [1]. A technique to perform DFT 
using the Arithmetic Fourier Transform (which uses less 
number of multiplications) is shown in [1]. Techniques to 
map heterogeneous computations are shown in [3]. 
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Abstract. This paper shows an efficient design for 2D-DCT on dynam- 
ically configurable coarse-grained architectures. Such coarse-grained ar- 
chitectures can provide improved performance for computationally de- 
manding applications as compared to fine-grained FPGAs. We have de- 
veloped a novel technique for deriving computation structures for two 
dimensional homogeneous computations. In this technique, the speed 
of the data channels is dynamically controlled to perform the desired 
computation as the data flows along the array. This results in a space ef- 
ficient design for 2D-DCT that fully utilizes the available computational 
resources. Compared with the state-of-the-art designs, the amount of lo- 
cal memory required is reduced by 33% while achieving the same high 
throughput. 

1    The Problem 

Coarse-grained configurable architectures consist of a small number of powerful 
configurable units. These units form datapath-oriented structures and can per- 
form critical word-based operations (e.g. multiplication) with high performance. 
This can result in greater efficiency and high throughput for coarse-grained com- 
puting tasks. 

The 2D-DCT of a N x TV image U is defined as [8]: 

2JV-1   2AT-1 

v(k,l)=   ^     ^2   u(m>")cfc,/(m>n) 
m,n=0 m.n=0 

This research was performed as part of the MAARC project (Models, Algorithms 
and Architectures for Reconfigurable Computing, http://maarc.usc.edu). This work 
is supported by the DARPA Adaptive Computing Systems program under contract 
no. DABT63-96-C-00049 monitored by Fort Hauchuca. 



where C = Ckj{m, n) is the N x Ar cosine transform matrix and 0 < k,l < N. 
The 8x8 2D-DCT is a fundamental computation kernel of still-picture and 

video compression standards. Efficient solutions (mapping schemes) must achieve 
high computational rates. In addition, since in coarse-grained configurable archi- 
tectures, the functional units are word-based, the amount of chip area available 
for local storage is limited. Hence, the designs should be space-efficient as well. 

In this work we derive computation structures for 8 x 8 2D-DCT. These 
structures match the datapath-oriented nature of the target architectures and 
lead to efficient mapping. The characteristics of the derived structures are: 

• Scalability with the size of 2D-DCT, 
• Partitionability with the image size N x N, 
• Maximum utilization of computational resources, and 
• Space efficiency. 

2    Our Approach 

The design methodology is based on a model of a configurable linear array. 
The array consists of identical powerful PEs, connected in a pipeline fashion 
with word parallel links between adjacent PEs. The data/control channels can 
be configured to communicate with each other at different speeds. The PEs 
can also be configured to have various internal organization (functionality). The 
parameters of the model include p, the number of PEs, m the amount of total 
memory in each PE and w the data width. An external controller/memory 
system is assumed to provide the required data/control signals and can store 
results computed by the array. I/O operations can only be performed at the left 
and right boundary of the array. Several research groups are currently building 
such configurable coarse-grained architectures [2, 6, 7, 9]. 

The key idea of our approach is dynamic interaction between data streams. 
The dataflow is determined by the speed and the connectivity of the datapaths. 
The configuration of the data paths schedules the computations to be performed 
onto a data stream along the array. Furthermore, the functionality of the PEs 
can be changed by reconfiguring the connectivity among their functional units, 
local memories and data channels. 

The parameters of the target architecture p, m, and w are given as input and 
are assumed to be independent of the problem size. The three major steps of the 
approach are: 
Step 1 (Algorithm selection): Selection of an appropriate algorithm for the con- 
sidered task. 
Step 2 (Primitive structure): Derivation of a "primitive" computation structure 
which is independent of the parameters p and m. The derived multirate linear 
array determines: 

• Internal structure of the PE, 
• Control/communication scheme, 
• Schedule of Data/Control streams, and 
• Speed of Data/Control channels. 



Step 3 (Partitioning): "Fitting" the solution obtained in Step 2 into the target 
architecture. Partitioned schemes are derived by efficient utilization of the local 
memory in the PEs. The new solution depends on the parameters p and m. 

3    2D-DCT on Coarse-grained Architectures 

Given a N x N image U, we partition it into 8x8 submatrices (Usxs) and then 
compute the 2D-DCTof each of them as V8xS = CU8x&CT = [C(CU8x8)T]T [8]. 
C is the 8x8 cosine transform matrix. This approach reduces the complexity 
of the problem from 0(N4) to 0(N3) [8]. It also leads to decomposition of the 
2D-DCT into two 1D-DCT blocks. Each block performs the 1D-DCT transform 
and transposes the computed matrix as well. 

Correspondingly, the 2D-DCT array (Fig. la) consists of two identical com- 
putational blocks of 8 PEs each. Each block computes and transposes the result 
of a 8 x 8 matrix multiplication (Fig. la). Data and control travel through the 
PEs via differential speed channels (fast/slow channels). The regular nature of 
the computation makes the control of the array uniform and simple. 

1a 
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'fasr data channel (1 clock cycle delay) 

Control channels 

Fig. 1. The 2D-DCT array (la) and the PE organization (lb). 

Figure lb shows the PE structure. In each PE, one column of the input 
submatrix commutes with all the 8 rows of the cosine transform matrix C. 
Thus, 8 results are computed per PE. Two 8-word banks of local memory are 
used per PE for storing the intermediate results. The contents of each memory 
bank are updated for 64 cycles alternatively. The memory contents are read in 
order 8 times during this time period via Mem OUT A. The values read by 
Mem OUT A get updated by the incoming data values and are stored back via 



Mem IN. The memory bank that is not updated, uploads in order its contents 
on OUT via Mem OUTJ2. Each memory bank is flushed every 128 cycles for 
8 consecutive cycles. The memory contents are uploaded in a repetitive manner 
along the array, starting from the leftmost to the rightmost PE. 

The cosine transform matrix C is fed into the slow data channel (Fig. la) 
in column-major order. The submatrix Usxs is fed into the fast data channel 
in row-major order. Figure la shows the way in which the data and control 
streams are transferred between the two computational blocks. The matrices C 
and (Clr8x8)T are fed to the second block via the slow and fast data channels 
respectively. In addition, a delay (£>) of 56 clock cycles is added to the datastream 
of matrix C. By inserting this delay, the datastreams of the two matrices are 
synchronized at the input of the second block. This synchronization can also be 
performed by using a new data channel. This new channel transports matrix 
C from the leftmost PE of the array to the second block. The delay is now 
distributed among the first 8 PEs (9 clock cycles per PE). Similar delays are 
inserted in the control channels as well. 

The order in which the results are computed in each block, assures that the 
output matrix is the desirable one. No additional block for transposing the result 
of matrix multiplication is needed. Moreover, the uploading mechanism leads to 
full utilization of the computational resources of the array. I/O operations are 
performed only at the right/left boundary of the array. Thus, the required I/O 
bandwidth is constant. 

The latency of the resulting array is 144 clock cycles while its throughput 
is same as the clock rate of the array. The multiply-add-update operation in- 
side the PEs (Fig. lb), is the most time consuming part of the computation 
and determines the clock rate of the array. By pipelining the datapath of this 
operation, the clock rate can be increased up to the computational rate of the 
slowest functional unit (multiplier, adder, memory). By replacing matrix C with 
its transpose CT, the same structure can compute the inverse 2D-DCT transform 
without any additional changes. On the average, the array requires 3 external 
memory accesses and 18 local memory accesses per clock cycle (i.e. 1.13 local 
accesses in each PE on the average). 

For the sake of illustration, we compare our solution with that proposed 
for RaPiD (a coarse-grained configurable architecture) [6]. Both solutions are 
based on the row/column decomposition of 2D-DCT to two W-DCTs. The time 
performance is asymptotically the same. The key difference is the amount of 
local memory required and the number of local memory references. 

In [6], matrix C is stored locally among the PEs and additional memory 
is needed for matrix-transpose operations. A total of 384 words of memory is 
used (i.e. m — 24 per PE). On the average, 20 local memory accesses/cycle are 
required. Our solution uses 256 words of local memory for storing intermediate 
results. On the average, it requires 18 local memory accesses/cycle. However, it 
also requires 3 (compared with 2 in [6]) external memory accesses/cycle. This is 
not a limiting factor since RaPiD can support at most two reads and one write 
to the external memory per cycle [6]. 



4    Conclusion 

Coarse-grained configurable architectures offer the potential for high compu- 
tational efficiency and throughput for coarse-grained computing tasks. In this 
paper, a 2D-DCT structure for such architectures was derived, using our dy- 
namic data path interaction technique. Space efficiency, high throughput and 
constant I/O requirements, are the main advantages of the derived array. 

Our technique is based on dynamic interaction of data streams via differential 
speed data channels. It also leads to scalable and partitioned mapping schemes 
for similar matrix-oriented computations (e.g. matrix-multiplication [4]). These 
schemes achieve high computational rates while the required I/O bandwidth is 
constant (independent of the size of the array). Moreover, their space efficiency 
makes them an attractive solution for coarse-grained configurable architectures. 

The work reported here is part of the USC MAARC project. This project 
is developing algorithmic techniques for realising scalable and portable appli- 
cations using configurable computing devices and architectures. Computational 
models and algorithmic techniques based on these models are being developed 
to exploit dynamic reconfiguration. In addition, partitioning and mapping issues 
in compiling onto reconfigurable hardware are also addressed [1, 3, 4, 5]. 
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Introduction 

Configurable systems have evolved from logic emulators and special purpose logic circuits to embedded 
system components and general purpose application accelerators. Various reconfigurable architectures are 
being explored by several research groups to develop a general purpose configurable system. 
Reconfigurable architectures vary from systems which have FPGAs and glue logic attached to a host 
computer to systems which include configurable logic on the same die as a microprocessor. Such systems- 
on-a-chip have enormous application potential in high performance embedded computing. 

Application development using such configurable hardware still necessitates expertise in low level 
hardware details. In this paper, we address some of the issues in the development of techniques for 
automatic compilation of applications. We develop algorithmic techniques for mapping applications in a 
platform independent fashion. 

Reconfigurable architectures with their regular structure, adaptive functionality and fine granularity are 
well suited for signal processing applications. Regular and repetitive byte-wise or bit-wise operations 
which occur in signal processing can be mapped onto reconfigurable architectures to achieve high speed- 
up. Most signal processing applications consist of core routines such as FFT, DCT and QRD among others. 
Loop constructs which occur in such routines provide an opportunity to develop effective mapping 
techniques. 

We address the problem of mapping a loop construct onto reconfigurable architectures. We define 
problems, based on the Hybrid System Architecture Model (HySAM), which address the issue of 
minimizing reconfiguration overheads by scheduling the configurations. A polynomial time solution for 
generating the optimal configuration sequence for one important variant of the mapping problem is 
presented. 

Loop Synthesis 

Computations which operate on a large set of data using the same set of operations are most likely to 
benefit from configurable computing. Hence, loop structures will be the most likely candidates for 
performance improvement using configurable logic. Configurations which execute each task can be 
generated for the operations in a loop. Since each operation is executed on a dedicated hardware 
configuration, the execution time for the task is expected to be lower than that in software. 

Hybrid System Architecture Model (HySAM) 

We have developed a parameterized model of a configurable computing system, which consists of 
configurable logic attached to a traditional microprocessor. The Hybrid System Architecture is a general 
architecture consisting of a traditional RISC microprocessor with additional Configurable Logic 
Unit(CLU). The architecture consists of a traditional RISC microprocessor, standard memory, configurable 

1 This work was supported by the DARPA Adaptive Computing Systems Program under contract 
DABT63-96-C-0049 monitored by Fort Hauchuca. 



logic, configuration memory and data buffers communicating through an interconnection network. The 
parameterized HySAM can model a wide range of systems from board level architectures to systems on a 
chip. Such systems include SPLASH, Berkeley Garp and NSC NAPA1000 among others. 

Linear Loop Synthesis 

Scheduling a general sequence of tasks, with a set of dependencies, to minimize the total execution time is 
known to be an NP-complete problem. We consider the problem of generating this sequence of 
configurations for loop constructs which have a sequence of statements to be executed in linear order. 
There is a linear data or control dependency between every pair of adjacent tasks. Most loop constructs, 
including those occurring in signal processing applications, fall into such a class. 

Find an optimal sequence of configurations to execute a linear sequence of statements in a loop. 

Problem: Given a sequence of tasks of a loop, Ti through Tp to be executed in linear order (T, T2 ... Tp), 
for N number of iterations, find an optimal sequence of configurations S (=CiC2 ...Cq), where St 6 
{Ci,C2,...,Cm} which minimizes the execution time cost E, where E = i=il

q (tSi + A( i+1). tSi is the execution 
time in configuration S, and Aj i+i is the reconfiguration cost which is given by Rj i+j. 

Optimal Solution for Loop Synthesis 

The input consists of a sequence of statements Ti.. .Tp and the number of iterations N. We can compute the 
execution times ty for executing each of the tasks T in configuration Cj. The reconfiguration costs Ry can 
be pre-computed since the configurations are known beforehand. In addition there is a loop setup cost 
which is the cost for loading the initial configuration, memory access costs for accessing the required data 
and the costs for the system to initiate computation by the Configurable Logic Unit. Though the memory 
access costs are not modeled in this work, it is possible to statically determine the loop setup cost. We 
present the mapping results without the proofs below: 

Lemma 1 
Given a sequence of tasks T'i T'2 ...T'r and the set of possible configurations {Ci,...,Cm} an optimal 
sequence of configurations for executing these tasks once can be computed in 0(rm ) time. 

Lemma 2 
An optimal configuration sequence for the tasks for N iterations can be computed by unrolling the loop 
only m times. 

Theorem 1 
The optimal sequence of configurations for N iterations of a loop statement with p tasks, when each task 
can be executed in one of m possible configurations, can be computed in 0(pm ) time. 

The complexity of the algorithm is 0(pm3) which is better than fully unrolling the loop (0(Npm2)) by a 
factor of 0(N/m). This solution can be used even when the number of iterations N is not known at compile 
time and is determined at runtime. The decision to use this sequence of configurations to execute the loop 
can be taken at runtime from the statically known loop setup and single iteration execution costs and the 
runtime determined N. 

Illustrative Example 

The Discrete Fourier Transform(DFT) is a very important component of many signal processing systems. 
Typical implementations use the Fast Fourier Transform(FFT) to compute the DFT in 0(N logN) time. The 
basic computation unit is the butterfly unit which has 2 inputs and 2 outputs. It involves one complex 
multiplication, one complex addition and one complex subtraction. 



We describe an analysis of the implementation to highlight the key features of our mapping technique and 
model. The aim is to highlight the technique of mapping a sequence of operations onto a sequence of 
configurations. This technique can be utilized to map onto any configurable architecture. We use the timing 
and area information from BRASS Garp architecture as representative values. The Garp architecture has a 
traditional RISC CPU (MIPS variant) attached to a reconfigurable array of logic blocks on the same die. 

For the given architecture we first determine the model parameters. We calculated the model parameters 
from published values and have tabulated them in Table 1 below. 

Operation Configuration Reconfiguration Time Execution Time 
Multiplication 

(Fast) 
c, 14.4 us 37.5 ns 

Multiplication 
(Slow) 

c2 6.4 fis 52.5 ns 

Addition c3 1.6 ns 7.5 ns 
Subtraction c4 1.6 us 7.5 ns 

Shift c5 3.2 MS 7.5 ns 

Table 1: Representative Model Parameters for Garp Reconfigurable Architecture (m = 5). 

The input application, which is the FFT innermost loop, is analyzed and decomposed. First, the loop 
statements have to be decomposed into functions which can be executed on the CLU, given the list of 
functions in Table 1. One complex multiplication consists of four multiplies, one addition and one 
subtraction. Each complex addition and subtraction consist of two additions and subtractions respectively. 
The statements in the loop are mapped to multiplication, addition and subtraction and linearized resulting in 
a task sequence Tm, Tm, Tm, Tm, Ta, T5, Ta, Ta, Ts, Ts. Here, Tm is the multiplication task, Ta is the addition 
task and Ts is the subtraction task. 

When we find the optimal sequence of configurations for this task sequence using our algorithm, the 
solution is the configuration sequence Ci,C3,C4,C3,C4 repeated for all the iterations. The most important 
aspect of the solution is that the multiplier configuration in the solution is actually the slower configuration. 
The reconfiguration overhead is lower for C2 and hence the higher execution cost is amortized over all the 
iterations of the loop. The total execution time is given by N* 13.055 \xs where N is the number of iterations. 
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Abstract. Reconfigurable circuits and systems have evolved from ap- 
plication specific accelerators to a general purpose computing paradigm. 
But the algorithmic techniques and software tools are also heavily based 
on the hardware paradigm from which they have evolved. Loop state- 
ments in traditional programs consist of regular, repetitive computa- 
tions which are the most likely candidates for performance enhancement 
using configurable hardware. This paper develops a formal methodol- 
ogy for mapping loops onto reconfigurable architectures. We develop a 
parameterized abstract model of reconfigurable architectures which is 
general enough to capture a wide range of configurable systems. Our 
abstract model is used to define and solve the problem of mapping loop 
statements onto reconfigurable architectures. We show a polynomial time 
algorithm to compute the optimal sequence of configurations for one im- 
portant variant of the problem. We illustrate our approach by showing 
the mapping of sin example loop statement. 

1    Introduction 

Configurable systems are evolving from systems designed to accelerate a specific 
application to systems which can achieve high performance for general purpose 
computing. Various reconfigurable architectures are being explored by several 
research groups to develop a general purpose configurable system. Reconfigurable 
architectures vary from systems which have FPGAs and glue logic attached to 
a host computer to systems which include configurable logic on the same die as 
a microprocessor. 

Application development onto such configurable hardware still necessitates 
expertise in low level hardware details. The developer has to be aware of the 
intricacies of the specific reconfigurable architecture to achieve high performance. 
Automatic mapping tools have also evolved from high level synthesis tools. Most 
tools try to generate hardware configurations from user provided descriptions of 

This work was supported by the DARPA Adaptive Computing Systems Program 
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circuits in various input formats such as VHDL, OCCAM, variants of C, among 
others. 

Automatic compilation of applications involves not only configuration gener- 
ation, but also configuration management. CoDe-X [8] is one environment which 
aims to provide an end-to-end operating system for applications using the Xputer 
paradigm. General techniques are being developed to exploit the characteristics 
of devices such as partial and dynamic reconfiguration by using the concepts of 
Dynamic Circuit Switching [11], Virtual Pipelines [10] etc. But there is no frame- 
work which abstracts all the characteristics of configurable hardware and there 
is no unified methodology for mapping applications to configurable hardware. 

In this paper we address some of the issues in the development of techniques 
for automatic compilation of applications. We develop algorithmic techniques 
for mapping applications in a platform independent fashion. First, we develop 
an abstract model of reconfigurable architectures. This parameterized abstract 
model is general enough to capture a wide range of configurable systems. These 
include board level systems which have FPGAs as configurable computing logic 
to systems on a chip which have configurable logic arrays on the same die as the 
microprocessor. 

Configurable logic is very effective in speeding up regular, repetitive com- 
putations. Loop constructs in general purpose programs are one such class of 
computations. We address the problem of mapping a loop construct onto config- 
urable architectures. We define problems based on the model which address the 
issue of minimizing reconfiguration overheads by scheduling the configurations. 
A polynomial time solution for generating the optimal configuration sequence 
for one important variant of the mapping problem is presented. 

Our mapping techniques can be utilized to analyze application tasks and 
develop the choice of configurations and the schedule of reconfigurations. Given 
the parameters of an architecture and the applications tasks the techniques can 
be used statically at compile time to determine the optimal mapping. The tech- 
niques can also be utilized for runtime mapping by making static compile time 
analysis. This analysis can be used at runtime to make a decision based on the 
parameters which are only known at runtime. 

Section 2 describes our Hybrid System Architecture Model(HySAM) in de- 
tail. Several loop mapping problems are defined and the optimal solution for one 
important variant is presented in Section 3. We show an example mapping in 
Section 4 and discuss future work and conclusions in Section 5. 

1.1    Related Work 

The question of mapping structured computation onto reconfigurable architec- 
tures has been addressed by several researchers. We very briefly describe some 
related work and how our research is different from their work. The previous 
work which addresses the related issues is Pipeline Generation for Loops [17], 
CoDe-X Framework [8], Dynamic Circuit Simulation [11], Virtual Pipelines [10], 
TMFPGA [14]. Though most of the projects address similar issues, the frame- 



work of developing an abstract model for solving general mapping problems is 
not fully addressed by any specific work. 

2    Model 

We present a parameterized model of a configurable computing system, which 
consists of configurable logic attached to a traditional microprocessor. This 
model can be utilized for analyzing application tasks, as regards to their suit- 
ability for execution on configurable logic and also for developing the actual 
mapping and scheduling of these tasks onto the configurable system. 

We first describe our model of configurable architectures and then discuss 
the components of the model and how they abstract the actual features of con- 
figurable architectures. 

2.1    Hybrid System Architecture Model(HySAM) 
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RISC 
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Fig. 1. Hybrid System Architecture and an example architecture 

The Hybrid System Architecture is a general architecture consisting of a tra- 
ditional RISC microprocessor with additional Configurable Logic Unit(CLU). 
Figure 1 shows the architecture of the HySAM model and an example of an 
actual architecture. The architecture consists of a traditional RISC micropro- 
cessor, standard memory, configurable logic, configuration memory and data 
buffers communicating through an interconnection network. 

We outline the parameters of the Hybrid System Architecture Model (HySAM) 
below. 

F 
C 

Ri 

Set of functions F\ ... Fn which can be performed on configurable logic. 
Set of possible configurations Ci.. .Cm of the Configurable Logic Unit. 
Execution time of function F,- in configuration Cj. 
Reconfiguration cost in changing configuration from C, to Cj. 



Nc : The number of configuration contexts which can be stored in the configu- 
ration cache. 

k.K : The reconfiguration time spent in configuring from the cache and external 
memory respectively. 

W, D : The Width and Depth of the configurable logic which describe the amount 
of configurable logic available. 

w : The granularity of the configurable logic which is the width of an individual 
functional unit. 

S : The schedule of configurations which execute the input tasks. 
E : Execution time of a sequence of tasks, which is the sum of execution time 

of tasks in the various configurations and the reconfiguration time. 

The parameterized HySAM which is outlined above can model a wide range 
of systems from board level architectures to systems on a chip. Such systems in- 
clude SPLASH [3], DEC PeRLE [16], Oxford HARP [9], Berkeley Garp [7], NSC 
NAPA1000 [15] among others. The values for each of the parameters establish 
the architecture and also dictate the class of applications which can be effec- 
tively mapped onto the architecture. For example, a system on a chip would 
have smaller size configurable logic(lower W and D) than an board level ar- 
chitecture but would have potentially faster reconfiguration times(lower Ar and 
K). 

The model does not encompass the memory access component of the com- 
putation in terms of the memory access delays and communication bandwidth 
supported. Currently, it is only assumed that the interconnection network has 
enough bandwidth to support all the required data and configuration access. For 
a detailed description of the model and its parameters see [2]. 

3    Loop Synthesis 

It is a well known rule of thumb that 90% of the execution time of a program 
is spent in 10% of the code. This code usually consists of repeated executions of 
the same set of instructions. The typical constructs used for specifying iterative 
computations in various programming languages are DO, FOR and WHILE, 
among others. These are generally classified as LOOP constructs. 

Computations which operate on a large set of data using the same set of 
operations are most likely to benefit from configurable computing. Hence, loop 
structures will be the most likely candidates for performance improvement using 
configurable logic. Configurations which execute each task can be generated 
for the operations in a loop. Since each operation is executed on a dedicated 
hardware configuration, the execution time for the task is expected to lower 
than that in software. Each of the operations in the loop statement might be a 
simple operation such as an addition of two integers or can be a more complex 
operation such as a square root of a floating point number. The problems and 
solutions that we present are independent of the complexity of the operation. 



3.1 Linear Loop Synthesis 

The problem of mapping operations(tasks) of a loop to a configurable system 
involves not only generating the configurations for each of the operations, but 
also reducing the overheads incurred. The sequence of tasks to be executed have 
to be mapped onto a sequence of configurations that are used to execute these 
tasks. The objective is to reduce the total execution time. 

Scheduling a general sequence of tasks with a set of dependencies to minimize 
the total execution time is known to be an NP-complete problem. We consider 
the problem of generating this sequence of configurations for loop constructs 
which have a sequence of statements to be executed in linear order. There is a 
linear data or control dependency between the tasks. Most loop constructs, in- 
cluding those which are mapped onto high performance pipelined configurations, 
fall into such a class. 

The total execution time includes the time taken to execute the tasks in the 
chosen configurations and the time spent in reconfiguring the logic between suc- 
cessive configurations. We have to not only choose configurations which execute 
the given tasks fast, but also have to reduce the reconfiguration time. It is possi- 
ble to choose one of many possible configurations for each task execution. Also, 
the reconfiguration time depends on the choice of configurations that we make. 
Since reconfiguration times are significant compared to the task execution times, 
our goal is to minimize this overhead. 

Problem : Given a sequence of tasks of a loop, T\ through Tp to be exe- 
cuted in linear order( T\ Ti ... Tp), where 7} G F, for N number of iterations, 
find an optimal sequence of configurations S (=C\ C2 • ■ ■ Cq), where Si G C 
(={Ci,C2,- ■ -,Cm}) which minimizes the execution time cost E. E is defined as 

E = £>5. + Aii+1) 
t=i 

where <s, is execution time in configuration 5,- and Aa+\ is the reconfigura- 
tion cost which is given by Ra+i- 

3.2 Optimal Solution for Loop Synthesis 

The input consists of a sequence of statements T\... Tp, where each 2} G F 
and the number of iterations N. We can compute the execution times tij for 
executing each of the tasks 2} in configuration Cj. The reconfiguration costs Rjj 
can be pre-computed since the configurations are known beforehand. In addition 
there is a loop setup cost which is the cost for loading the initial configuration, 
memory access costs for accessing the required data and the costs for the system 
to initiate computation by the Configurable Logic Unit. Though, the memory 
access costs are not modeled in this work, it is possible to statically determine 
the loop setup cost. 

A simple greedy approach of choosing the best configuration for each task will 
not work since the reconfiguration costs for later tasks are affected by the choice 



of configuration for the current task. We have to search the whole solution space 
by considering all possible configurations in which each task can be executed. 
Once an optimal solution for executing up to task TJ is computed the cost for 
executing up to task Ti+i can be incrementally computed. 

Lemma 1. Given a sequence of tasks T[T'2 .. .T'r, an optimal sequence of con- 
figurations for executing these tasks once can be computed in 0{rm~) time. 

Proof: Using the execution cost definition we define the optimal cost of 
executing up to task T( ending in a configuration Cj as Ejj. We initialize the E 
values as EQJ = 0, V j :  1 < j <m. 

Now for each of the possible configurations in which we can execute T-+1 we 
have to compute an optimal sequence of configurations ending in that configu- 
ration. We compute this by the recursive equation: 

Ei+ij = ti+ij + mink(Eik + Rkj)    V j :   1 < j < m 

We have examined all possible ways to execute the task T-+1 once we have fin- 
ished executing T{. If each of the values Eik is optimal then the value Ei+ij is op- 
timal. Hence we can compute an optimal sequence of configurations by comput- 
ing the Etj values. The minimum cost for the complete task sequence(T^T^ ... T/) 
is given by minj[Erj}. The corresponding optimal configuration sequence can be 
computed by using the E matrix. 

We can use dynamic programming to compute the E{j values. Computation 
of each value takes 0(m) time as there are m configurations. Since there are 
0(rm) values to be computed, the total time complexity is 0(rm2). 0 

Lemma 1 provides a solution for an optimal sequence of configurations to 
compute one iteration of the loop statement. But repeating this sequence of 
configurations is not guaranteed to give an optimal execution for AT iterations. 
Figure 2 shows the configuration space for two tasks T\ and Ti and four possible 
configurations C\, C2, C3, C4. 7i can be executed in C\ or C3 and task Ti can 
be executed in Ci or C4. The edges are labeled with the reconfiguration costs 
and cost for the edges and configurations not shown is very high. We can see 
that an optimal sequence of execution for more than two iterations will be the 
sequence C\ C4 C3 C2 repeated N/2 times. The repeated sequence of C\ C4 
which is an optimal solution for one iteration does not give an optimal solution 
for N iterations. 

C0^0^0^0^ 
(T,) (T2) (Tj) (T2) 

Fig. 2. Example reconfiguration cost graph and optimal configuration sequence 



One simple solution is to fully unroll the loop and compute an optimal se- 
quence of configurations for all the tasks. But the complexity of algorithm will be 
0{Npm2), where TV is the number of iterations. Typically the value of TV would 
be very high(which is desirable since higher value of TV gives higher speedup 
compared to software execution). We assume N » m and TV » p. We show that 
an optimal configuration sequence can be computed in 0(pm3) time. 

Lemma 2. An optimal configuration sequence can be computed by unrolling the 
loop only m times. 

Proof: Let us denote the optimal sequence of configurations for the fully 
unrolled loop by C\Ci.. .Cx. Since there are p tasks and TV iterations x — 
TV * p. Configuration C\ executes T\, Ci executes To and so on. Now after one 
iteration execution, configuration Cp+i executes task T\ again. Therefore, task 
T\ is executed in each of configurations C\, Cp+i, C2*P+i, • • •, C"r_p+i. Since 
there are at most m configurations for each task, if the number of configurations 
in Ci, Cp+i, C2*P+i, ■ ■ ■, Cx-p+i is more than m then some configuration will 
repeat. Therefore, 3 y s.t. Cy»p+i = C\. 

Let the next occurrence of configuration C\ for task T\ after Cy*p+i be 
C2„P+i. The subsequence C\ C2 C3... Cy»P+i should be identical to Cy*p+i 
Cy*p+2 ■ ■ ■ CZ9p+\. Otherwise, we can replace the subsequence with higher per 
iteration cost by the subsequence with lower per iteration cost yielding a bet- 
ter solution. But this contradicts our initial assumption that the configuration 
sequence is optimal. Hence the two subsequences should be identical. This does 
not violate the correctness of execution since both subsequences are executing 
a fixed number of iterations of the same sequence of input tasks. Applying the 
same argument to the complete sequence C1C2 ■ ■ ■ Cx, it can be proved that all 
subsequences should be identical. 

The longest possible length of such a subsequence is m * p(p possible tasks 
each with m possible configurations). This subsequence of m * p configurations 
is repeated to give the optimal configuration sequence for N *p tasks. Hence, we 
need to unroll the loop only m times. O 

Theorem 3. The optimal sequence of configurations for N iterations of a loop 
statement with p tasks, when each task can be executed in one of m possible 
configurations, can be computed in 0(pm3) time. 

Proof: From Lemma 2 we know that we need to unroll the loop only m times 
to compute the required sequence of configurations. The solution for the unrolled 
sequence of m * p tasks can be computed in 0(pm3) by using Lemma 1. This 
sequence can then be repeated to give the required sequence of configurations 
for all the iterations. Hence, the total complexity is 0(pm3). Q 

The complexity of the algorithm is 0(pm3) which is better than fully un- 
rolling (0[Npm2)) by a factor oiO{N/m). This solution can also be used when 
the number of iterations TV is not known at compile time and is determined 
at runtime. The decision to use this sequence of configurations to execute the 



loop can be taken at runtime from the statically known loop setup and single 
iteration execution costs and the runtime determined N. 

4    Illustrative Example 

The techniques that we have developed in this paper can be evaluated by using 
our model. The evaluation would take as input the model parameter values 
and the applications tasks and can solve the mapping problem and output the 
sequence of configurations. We are currently building such a tool and show results 
obtained by manual evaluation in this section. 

The Discrete Fourier Transform(DFT) is a very important component of 
many signal processing systems. Typical implementations use the Fast Fourier 
Transform(FFT) to compute the DFT in 0(N log N) time. The basic computa- 
tion unit is the butterfly unit which has 2 inputs and 2 outputs. It involves one 
complex multiplication, one complex addition and one complex subtraction. 

There have been several implementations of FFT in FPGAs [12, 13]. The 
computation can be optimized in various ways to suit the technology and achieve 
high performance. We describe here an analysis of the implementation to high- 
light the key features of our mapping technique and model. The aim is to high- 
light the technique of mapping a sequence of operations onto a sequence of 
configurations. This technique can be utilized to map onto any configurable ar- 
chitecture. We use the timing and area information from Garp [7] architecture 
as representative values. 

For the given architecture we first determine the model parameters. We cal- 
culated the model parameters from published values and have tabulated them 
in Table 1 below. The set of functions(-F) and the configurations(C) are out- 
lined in Table 1 below. The values of n and m are 4 and 5 respectively. The 
Configuration Time column gives the reconfiguration values R. We assume the 
reconfiguration values are same for same target configuration irrespective of the 
initial configuration. The Execution Time column gives the tjj values for our 
model. 

Function Operation Configuration Configuration 
Time 

Execution 
Time 

F3 

FA 

Multiplication (Fast) 
Multiplication (Slow) 

Addition 
Subtraction 

Shift 

c2 
c3 
c4 
c5 

14.4 ps 
6.4 /JS 

1.6 ßs 
1.6 /zs 
3.2 (is 

37.5 ns 
52.5 ns 
7.5 ns 
7.5 ns 
7.5 ns 

Table 1. Representative Model Parameters for Garp Reconfigurable Architec- 
ture 

The input sequence of tasks to be executed is is the FFT butterfly operation. 
The butterfly operation consists of one complex multiply, one complex addition 



and one complex subtraction. First, the loop statements were decomposed into 
functions which can be executed on the CLU, given the list of functions in Ta- 
ble 1. One complex multiplication consists of four multiplications, one addition 
and one subtraction. Each complex addition and subtraction consist of two addi- 
tions and subtractions respectively. The statements in the loop were mapped to 
multiplications, additions and subtractions which resulted in the task sequence 
Tm. Tm, Tm, Tm, Ta, T„ Ta, Ta, T„ Ts. Here, Tm is the multiplication task 
mapped to function F\, Ta is the addition task mapped to function Fo and Ts 

is the subtraction task mapped to function F3. 
The optimal sequence of configurations for this task sequence, using our algo- 

rithm, was C\,CZ-CA,C3,CA repeated for all the iterations. The most important 
aspect of the solution is that the multiplier configuration in the solution is actu- 
ally the slower configuration. The reconfiguration overhead is lower for C2 and 
hence the higher execution cost is amortized over all the iterations of the loop. 
The total execution time is given by N * 13.055 ps where N is the number of 
iterations. 

5    Conclusions 

Mapping of applications in an architecture independent fashion can provide a 
framework for automatic compilation of applications. Loop structures with reg- 
ular repetitive computations can be speeded-up by using configurable hardware. 
In this paper, we have developed techniques to map loops from application pro- 
grams onto configurable hardware. We have developed a general Hybrid System 
Architecture Model(HySAM). HySAM is a parameterized abstract model which 
captures a wide range of configurable systems. The model also facilitates the 
formulation of mapping problems and we defined some important problems in 
mapping of traditional loop structures onto configurable hardware. We demon- 
strated a polynomial time solution for one important variant of the problem. 
We also showed an example mapping of the FFT loop using our techniques. The 
model can be extended to solve other general mapping problems. The applica- 
tion development phase itself can be enhanced by using the model to develop 
solutions using algorithm synthesis rather than logic synthesis. 

The work reported here is part of the USC MAARC project. This project 
is developing algorithmic techniques for realizing scalable and portable applica- 
tions using configurable computing devices and architectures. We are developing 
computational models and algorithmic techniques based on these models to ex- 
ploit dynamic reconfiguration. In addition, partitioning and mapping issues in 
compiling onto reconfigurable hardware are also addressed. Some related results 
can be found in [1], [4], [5], [6]. 
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Abstract 

FPGAs can perform better than ASICs if the logic mapped onto 
them is optimized for each problem instance. Unfortunately, this 
advantage is often canceled by the long time needed by CAD tools 
to generate problem instance dependent logic and the time required 
to configure the FPGAs. 

In this paper, a novel approach for runtime mapping is proposed 
that utilizes self-reconfigurability of multicontext FPGAs to achieve 
very high speedups over existing approaches. The key idea is to 
design and map logic onto a multicontext FPGA that in turn maps 
problem instance dependent logic onto other contexts of the same 
FPGA. As a result, CAD tools need to be used just once for each 
problem and not once for every problem instance as is usually done. 

To demonstrate the feasibility of our approach, a detailed imple- 
mentation of the KMP string matching algorithm is presented which 
involves runtime construction of a finite state machine. We im- 
plement the KMP algorithm on a conventional FPGA (Xilinx XC 
6216) and use it to obtain accurate estimates of performance on 
a multicontext device. Speedups in mapping time of « 106 over 
CAD tools and more than 1800 over a program written specifically 
for FSM generation were obtained. Significant speedups were ob- 
tained in overall execution time as well, including a speedup rang- 
ing from 3 to 16 times over a software implementation of the KMP 
algorithm running on a Sun Ultra 1 Model 140 workstation. 

1   Introduction 

By exploiting the reconfigurability of FPGAs, significant perfor- 
mance improvements have been obtained over other modes of com- 

This work was supported by the DARPA Adaptive Computing Systems 
Program under contract DABT63-96-C-0049 monitored by Fort Hauchuca. 
Alessandro Mei is with the Department of Mathematics of the University of 
Trento, Italy. This work has been done during his stay at the USC. 

putation for several applications. However, there are two serious 
problems that prevent FPGAs from being utilized to their fullest 
potential: 

• long mapping time; 

• long reconfiguration time. 

Mapping time refers to the time to compile, place and route the logic 
to be used on the FPGA; reconfiguration time is the time needed to 
load the configuration data into the FPGA. Mapping computation 
onto FPGAs is typically done using CAD tools. It is a time con- 
suming process and can take anywhere from a few minutes to a few 
days. In order to take advantage of the reconfigurability of FPGAs, 
a new mapping should be created for every problem instance. As a 
result, the mapping time becomes very critical and it is extremely 
important to reduce it. 

The time required to completely reconfigure an FPGA is typically 
about 1 ms. Since reconfiguration time needs to be amortized over 
computation time, frequent run-time reconfiguration is not possible. 
It should be noted that even partial reconfiguration is not a com- 
plete solution to this problem. Since reconfigurability is the key 
advantage of FPGAs over other modes of computation, reduction 
of reconfiguration time is very important. 

In this paper we show how to significantly reduce both mapping 
and reconfiguration times through self-reconfiguration. By self- 
reconfiguration we mean that not only does the FPGA load the con- 
figuration information itself, but also that it generates the configu- 
ration. We show how self-reconfiguration can be efficiently imple- 
mented using multicontext FPGAs (FPGAs having more than one 
configuration context on-chip). Although, such devices have been 
primarily designed to reduce reconfiguration times, we show how 
they can be used for self-reconfiguration as well. 

Self-reconfiguration reduces mapping time because all logic to be 
configured is generated by previously configured logic. The map- 
ping logic is designed to generate highly specific mapped logic and 
is therefore much simpler than general purpose CAD tools. Also, it 
executes on an FPGA. For these reasons, the mapping time is con- 
siderably lesser than mapping via software running on a host ma- 
chine. Self-reconfiguration reduces reconfiguration time because 
configurations are generated and stored on-chip which is much 
faster than loading it from an external source. Also, multicontext 
FPGAs can very quickly switch between stored configurations. As 
a result of these improvements, self-reconfiguration allows runtime 
generation of logic and its use to be interwoven in ways that would 
be impractical otherwise. We demonstrate this power and flexibil- 
ity by a string matching algorithm implementation. Even though 
our early results are very promising, a deep investigation is needed 
to fully understand what can be achieved by using this approach 
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Figure 1: 

to reconfigurable computing, and it seems to be a challenging and 
wide open research area. 

In the first part of the paper, we introduce self-reconfiguration and 
its advantages (Section 2) and how it is achieved using multicon- 
text FPGAs (Section 3). In the second part, we introduce the KMP 
algorithm (Section 4) and present detailed implementation descrip- 
tion and performance analysis (Section 5). The conclusion is in 
Section 6. 

2   Introduction to Self-Reconfiguration 

2.1   Problem instance dependence and hard- 
ware compiling 

The effectiveness of reconfigurable computing is better exploited by 
building hardware solutions for each single instance of a given prob- 
lem. That essentially means that a good application for reconfig- 
urable devices should read the input of the problem (the instance), 
compute instance dependent logic, i.e. logic optimized for that par- 
ticular instance, and load it into a reconfigurable device to solve the 
problem. Applications which produce instance independent logic 
to be loaded onto a reconfigurable device are simply not exploit- 
ing the power of reconfiguration. In that case the logic mapped is 
static, depends only on the algorithm used, and is not conceptually 
different from ASIC approach. 

A large class of applications developed for reconfigurable devices 
can thus be modeled in the following way (see Figure 1(a)). A pro- 
cess M reads the input problem instance. Depending on the instance 
a logic E, ready to be loaded, is computed such that it is optimized 
to solve that single problem instance. This process is usually ex- 
ecuted by the host computer. Let TM denote the time to perform 
this. 

After reconfiguring the device, E is executed. Let TME denote 
the time to reconfigure. The time TE required for the execution 
includes the time needed for reading the inputs from the memory 
and producing the output. Therefore, the time required by the ex- 
ecution of a single iteration of the computation described above is 
Ti = TM + TME + TE- 

The actual execution time on the reconfigurable device is TE- It is 
often very low compared with the time needed to solve the same 
problem by using a software solution, due to hardware efficiency. 
This has been used to claim that very high speed-up can be achieved 
by reconfigurable computing. It should be clear that this is not a fair 
way to compare the performance of reconfigurable systems. How- 
ever, this is frequently done. We believe that all times involved in 
computing the solution to a given instance of a problem should be 
taken into account. 

The time TM required by M varies considerably among applica- 
tions, and usually ranges from a few minutes to several hours, and, 
for some particularly complex logic, even days! The reason lies in 
the fact that usually CAD tools are used. CAD tools are very pow- 
erful and general applications, but their flexibility is obtained at the 
expense of large computing time. In fact, what is actually done, 
is to compile, using a CAD tool, each single instance to derive the 
logic E to be used to solve the problem. 

The fact that TM is usually large limits the effectiveness of recon- 
figurable computing. In [1], for example, a shortest paths algorithm 
is implemented. In that case, the execution time TE for a problem 
instance is order of microseconds, while the mapping time TM is or- 
der of hours. Also in [15], the proposed algorithm for SAT usually 
takes hours to be mapped. SAT is NP-complete, and thus a good 
candidate to make TM affordable since TE is usually very high. In 
spite of that, when mapping time is taken into account, only mod- 
est speedups are obtained. The time TME depends on to the device 
used. For FPGAs, for example, it is typically around 1 millisecond, 
and it is related to the bottle-neck represented by the bus connecting 
the host computer to the FPGA board. Even if the reconfiguration 
time TME is often much lower than the mapping time, it can still 
be unacceptable for most real-time applications. 

Some efforts have been made to overcome these problems. For ex- 
ample, in [7] CAD Tools are used only once to compute a generic 
skeleton logic. Then, for each problem instance, some limited 
changes are made by the host computer to build an instance depen- 
dent circuit and load it into the FPGA board. This is an interesting 
technique that can be useful to lower the mapping time TM, but 
cannot avoid the bottle-neck represented by the bus connecting the 
host computer to the FPGA board. In [7], TM + TME is around 3 
seconds, still too high for a large class of applications. 

This paper presents a novel approach to reconfigurable computing 
which is able to dramatically reduce TM and TME- Since M has to 
be speeded up, what we propose is to let fast reconfigurable devices 
to be able to execute it (see Figure 1(b)). In case a single FPGA is 
being used, this essentially means that the FPGA should be able to 
read from a memory the problem instance, configure itself, or a part 
of it, and execute the logic built by it to solve the problem instance. 
Evidently, in this case M is itself a logic circuit, and cannot be as 
complex and general as CAD tools are. 

Letting FPGA system execute both M and E on the same chip gives 
the clear advantage that CAD tools are used only once, in spite of 
classical solutions where they are needed for computing a logic 
for each problem instance. This is possible since the adaptations, 



needed to customize the circuit to the requirements of the actual 
input, are performed dynamically by the FPGA itself, taking advan- 
tage of hardware efficiency. 

Another central point is that the bus connecting the FPGA system to 
the host computer is now only used to input the problem instance, 
since the reconfiguration data are generated locally. In this way, the 
bottle-neck problem is also handled. 

These ideas are shown to be realistic and effective by presenting a 
novel implementation of a string matching algorithm. String match- 
ing is one of the most important problems in Computer Science, 
both from a theoretical and from a practical point of view. In Sec- 
tion 5, a detailed implementation is described, and TM + TME is 
shown to be around 28/xs, for patterns 16 character long, achieving 
a dramatic speed-up over classical FPGA computations. 

2.2   Self-reconfiguration 

The main feature needed by an FPGA device to fulfill the require- 
ments needed by the technique shown in the previous section is self- 
reconfigurability. This concept has been mentioned few times in the 
literature on reconfigurable architectures in the last few years [6] [5]. 
In spite of that, to the best of our knowledge not only no one de- 
vised an application that actually used that feature, but no one even 
investigated to understand how self-reconfiguration could be used 
to achieve superior performance. 

The concept of self-reconfiguration was earliest presented in [6], 
where a small amount of static logic is added to a reconfigurable 
device based on an FPGA in order to build a self-reconfiguring pro- 
cessor. Being an architecture oriented work, no application of this 
concept is shown. 

The recent Xilinx XC6200 is also a self-reconfiguring device, and 
this ability has been used in [5] to define an abstract model of 
virtual circuitry, the Flexible URISC. This model still has a self- 
configuring capability, even though it is not used by the simple ex- 
ample presented in [5]. 

All these devices are potentially capable of self-reconfiguring, and 
are thus able of implementing the ideas presented in this paper. 
However, moving the process of building the reconfigurable logic 
into the device itself requires a larger amount of configuration mem- 
ory in the device with respect to traditional approaches. For this 
reason, multi-context FPGAs seem to answer better to these re- 
quirements, since they have been shown to be able to store a large 
amount of different contexts (see [12], for example, where a self- 
reconfiguring 256-context FPGA is presented). 

3   Multicontext FPGAs 

As described in the Introduction, the time required to reconfigure a 
traditional FPGA is very high. To reduce the reconfiguration time, a 
device having more than one configuration context was proposed in 
[4]. Several such multicontext FPGAs have been recently proposed 
[13][11][14][8][3]. 

These devices have on-chip RAM to store a number of configura- 
tion contexts, varying from 8 to 256. At any given time, one context 

governs the logic functionality and is referred to as the active con- 
text. Switching contexts takes 5-100 ns. This is several orders of 
magnitude faster than the time required to reconfigure a conven- 
tional FPGA («1 ms). 

For self-reconfiguration to be possible, the following two additional 
features are required of multicontext FPGAs: 

• The active context should be able to initiate a context switch— 
no external intervention should be necessary. 

• The active context should be able to read and write the config- 
uration memory corresponding to other contexts. 

The multicontext FPGAs described in [13][11][14] satisfy the 
above requirements and hence are capable of self-reconfiguration1. 

4   The KMP Algorithm for String Matching 

The String Matching problem consists of finding all occurrences of 
a pattern P, of length m, in a text T, of length n,m<n, with P 
and T being strings over a finite alphabet S. 

Besides being a fundamental problem in Computer Science from a 
theoretical point of view, String Matching is of paramount practi- 
cal relevance. Important examples of its application can be easily 
found in the areas of Text Processing, Pattern Recognition, Image 
Understanding, Databases, and Biology, to name a few. In partic- 
ular, applications of String Matching in Biology are of utmost im- 
portance, since finding patterns of DNA inside longer sequences is 
becoming central in the analysis of human genome. 

A naive algorithm that can be used to solve String Matching con- 
sists in trying to match the pattern at each position in the text by a 
"brute force" search. Meaning that for each position i in the text, 
we perform a do-loop operation to check whether all m characters 
of P match m characters of T starting from position i. If we found 
a mismatch, say at position i + h, we can stop this search and try at 
position i + 1. This leads to a simple, but slow, algorithm, whose 
time complexity is 0(mn), in the worst case, and thus quite far 
from optimality. 

It can be remarked, however, that if we find a mismatch at position 
i, it makes sense to try at position i + 1 only if the pattern is such 
that its first h — 1 characters, which are equal to the h — 1 charac- 
ters starting at position i in the text, are exactly equal to the h — 1 
characters starting at position 2 in the pattern itself. If this is not 
the case, we waste our time looking for a match at position i + 1; 
moreover, if this is the case, we also waste time comparing the first 
h — 1 characters of the pattern, from position i +1 to position i + h 
excluded in the text, since we already know that we are going to 
find all matches. 

More generally, after finding a mismatch at position i + h, we can 
jump in the pattern at the end of the longest prefix that is also a 
suffix of the first h character in the pattern, and keep on comparing 
the character at position i + h in the text. There is no way to find an 

'The string matching implementation described later also requires con- 
figuration memory writes to take only a few clock cycles. At least one of the 
devices [11] allows this and others may also. 



Procedure TextSearch(P. T) 

n = length(T): 
m =■ length(P); 
IT = ComputePrefixFunction(P); 
g = 0; i = 0: 
while (i < n) do 

if (T[i] / P[q])and(q == 0) then 
++i: 

else if (T[i) ^ P[g])and(g ^ 0) then 
q = Tt[q); 

else if (T\i] == P[q])and(q # m - 1) then 
+ + i; + + q; 

else if (T[i] == P[g])and(g == m - 1) then 
print "match found"; 
+ + i; + + q: 

end if 
end while 

Function ComputePrefixFunction(P) 

m = length(P); 
TT[1] = 0; 
i = l;g = 0; 
while (i < m) do 

if (P[i] ± P[g])and(g == 0) then 
++i; 
it[i] = 0; 

else if (P[i] + P[g])and(g ^ 0) then 
9 = * [g]; 

else if (P[t] ==P[g])then 
+ + i; + + q\ 
7r[i] = g; 

end if 
end while 

Figure 2: KMP algorithm Phase 2 (Text search) and Phase 1 
(Prefix function Computation). 

occurrence of the pattern before that point, and, at the same time, we 
can take advantage of internal symmetries of the pattern avoiding 
checking characters in the text more than needed. 

This is the key idea of the Knuth-Morris-Pratt algorithm, which 
computes, for each position h in the pattern, the longest prefix that 
is also a suffix of the first h character of the pattern itself. This in- 
formation is encapsulated in a function 7r such that it[h] = j if and 
only if the first j characters of P are the longest proper prefix that 
is also a suffix of the first h characters of P. Note that x does not 
depend on the text, and can be thus precomputed by looking at the 
pattern only. 

The KMP algorithm is a classical 2-phase computation. It takes 
in input the pattern P, performs a precomputation on P to get 
the function it, and then, in the second phase, uses 7r to speed-up 
the search inside the text. Using terminology introduced earlier, 
TM + TME is the time taken by Phase 1 while the time taken by 
Phase 2 is TE- The algorithms used for Phase 1 (Prefix function 
computation) and Phase 2 (Text search) are shown in detail in Fig- 
ure 2. The algorithms shown have been written such that they cor- 
respond closely to their hardware implementation. It can be proved 
that KMP is optimal, requiring 0(m + n) to perform both phases 
(see [2] for a proof and a detailed description of the KMP algo- 

d^mwe 
Figure 3: Example of it function for a pattern p = ababca. The 
index q of the algorithms in Figure 2 can be implemented as a 
pointer to a node, and an edge from the node h to the node j is 
present if and only if Tt[h] = j. 

rithm). 

KMP seems to be an ideal candidate to be implemented on recon- 
figurable devices. Indeed, thanks to reconfigurability, the function 
it, depending on the input of each single instance of the problem, 
can be implemented in hardware, thus considerably speeding-up the 
searching phase. A good way to visualize the function it is given in 
Figure 3, where each node indicate a position in the pattern, and an 
edge is present between nodes h and j if and only if it[h] = j. In 
this way, the value of the index q in the the KMP-Matcher, shown 
in Figure 2, can be stored as a pointer to a node, and at each step 
of computation the pointer q moves either to the next node q +1, if 
a match is found, or to the node ir[q] indicated by the edge starting 
from node q, otherwise. This behavior is very similar to that of a 
finite state machine, and it is well suited for hardware implementa- 
tion, as will be shown in the next section. 

Our implementation is devised to handle an on-line version of 
String Matching. Meaning that our FPGA system is able to read 
an incoming pattern, configure itself depending on it, and solve the 
problem on an incoming text. Moreover, it is possible to change the 
problem instance by furnishing a new pattern to the system. In this 
case, the FPGA reconfigures itself to optimize depending on the 
new pattern, and is ready to solve the new instance on an incom- 
ing text. All these operations (including reconfiguration) are per- 
formed inside the FPGA system itself, without involving the host 
computer. 

5   Implementation of the KMP algorithm 

In this section, we present the details of how the KMP algorithm 
exploiting self-reconfiguration would be implemented on a multi- 
context FPGA. Unfortunately, multicontext FPGAs are not com- 
mercially available. Therefore, we implement the logic on a con- 
ventional FPGA and simulate self-reconfiguration via software. We 
begin by describing in Section 5.1 how the algorithm is realized in 
hardware without discussing any FPGA specific features. Since the 
FSM is the most important component, its structure and runtime 
construction are described in detail. Section 5.2 presents the details 
of how it would be implemented on a multicontext FPGA. The ac- 
tual implementation on a conventional FPGA (Xilinx XC6216) is 
presented in Section 5.3. Finally, performance is evaluated in Sec- 
tion 5.4. 



5.1    Hardware Realization 

We describe Phase 2 of the algorithm first. Logic is constructed at 
runtime in Phase 1 and used in Phase 2. Knowing what the con- 
structed logic looks like and how it works makes it easier to under- 
stand the subsequent description of Phase 1. 

compared with itself instead of text T. The only major difference 
is additional steps for constructing the prefix function 7r through 
assignments to 7r[i]. In terms of logic, these assignments translate 
to constructing the back edges of all the states of the FSM. Con- 
struction of the FSM at runtime and the logic required to do so are 
described below. 

5.7.7    Phase 2: Text Search 

The datapath used for Phase 2 (see Figure 2) is shown in Figure 
4. The text T is stored in external memory. The index i in the 
algorithm is essentially an address counter used to fetch the next text 
character. The entire pattern P is stored on-chip. The comparator 
is used to compare the appropriate text and pattern characters. The 
last major logic block implements the prefix function 7r. 

The operation of the datapath can be easily understood by looking 
at Figure 4. Each clock cycle, the four if conditions are evaluated 
in parallel but only one of the statements is executed. The values 
of the signals char-match, state.zero and state-final 
determine which of the four paths is selected. The controller gen- 
erates appropriate values for the signals inc.i, inc_match, 
next-state and inc.state. If next-state is 0, q remains 
unchanged for the clock cycle. Otherwise, + + q (state_inc=l) 
or q = n[q] (state.inc=0) is performed. To improve perfor- 
mance, the implementation overlaps fetching T[i] with datapath op- 
eration. 

Prefix Function FSM As described in Section 4, the prefix func- 
tion 7r can be implemented as a FSM. The FSM contains m states, 
0 to m — 1. The state corresponding to the value of q is the current 
state. 

There are two standard techniques for implementing FSMs using 
programmable logic [9]. One way is using a LUT that stores the 
FSM states in a (typically binary) encoded form. As the FSM size 
increases, the speed decreases and area required increases because 
of the wider and deeper decoding logic and the associated routing. 
Also, in the our case two comparators would be required for gener- 
ating the state.zero and state-final signals. 

The other approach is to use the One-Hot Encoding (OHE) 
scheme—one flip-flop is associated with each state. At anytime 
exactly one flip-flop has a 1 bit signifying the current state. This 
approach is simpler and more efficient as it requires lesser decoding 
logic and suits the flip-flop rich architecture of FPGAs. 

We exploit properties of ir to develop a particularly compact and 
simple implementation of the FSM. There are exactly two possible 
transitions from each state. One of these is to the following state 
(forward edge) and the other is to one of the previous states (back- 
ward edge). These properties simplify the routing considerably. 
In addition, the signals initial-state and f inal-state are 
simply the outputs of the initial and final state flip-flops respectively, 
eliminating the need for any comparators. 

5.7.2   Phase 1: Prefix Function Construction 

As can be seen from Figure 2, Phase 1 is similar to Phase 2. Two 
minor differences are that i is initialized to 1 and the pattern P is 

Online FSM Construction The FSM for the given pattern is con- 
structed using a preconfigured template. The FSM template, shown 
in Figure 5 is independent of the pattern and constructed before- 
hand. Flip-outputs go to the next flip-flop (forward edges) and to 
horizontal wires (which runtime back edge construction described 
below). At any time during execution, only the flip-flop for state 
q has a 1-bit. The template also has storage for the pattern P with 
P[q] available as the output of the rightmost mux. 

At runtime, the first step is to customize the template for the input 
pattern size m. This is done by connecting the output of flip-flop 
for state m — 1 to the horizontal wire that is the lower input to 
the state 0 flip-flop. This is followed by loading and storing the 
pattern on-chip. Next Phase 1 starts, and the execution of statements 
n[i + 1] = q and 7r[i + 1] = 0 in the Phase 1 algorithm results in 
the construction a back edge from state i + 1 to state q or state 0 
respectively. As can be seen from Figure 6, this is only a matter of 
inserting an OR gate at the appropriate position. The piece of logic 
that constructs back edges takes q and i as inputs and computes the 

position (i row and q column) at which the OR gate is to be 
inserted. See Section 5.3 for implementation details of this logic. 

In this manner, problem instance dependent logic is mapped within 
clock cycles, instead of minutes or hours that would be required if 
software was in the loop. Another interesting feature is that in FSM 
construction alternates with FSM use (whenever 7r is read in Phase 
1). Such a fine grained interleaving would not be possible without 
self-reconfiguration. 

5.2   Proposed Implementation on a multicon- 
text FPGA 

Before computation begins, the pattern P, pattern length m, text T 
and text length n are stored in external memory that can be accessed 
by the multicontext FPGA. The following logic is configured onto 
four contexts of the FPGA. Context 0 contains control logic that 
governs overall execution of the algorithm. Context 1 has logic for 
customizing the FSM for given m. Context 2 contains datapath for 
Phase 1 of the KMP algorithm as well as logic for runtime FSM 
construction. Hardwired into this logic are configuration bits for 
the OR-gate and its connections (referred to as or-gate). The num- 
ber of configuration memory writes needed for OR-gate insertion is 
Sor-gate- The FSM is constructed on context 3 in Phase 1. During 
Phase 2 it includes the datapath required for Phase 2 as well. 

Figure 7 shows the computation performed in each context (compu- 
tation done in context 3 during Phase 1 and Phase 2 is shown as con- 
text 3a and context 3b respectively). At the end of each statement 
is the time required by the logic to execute it. The times are ex- 
pressed in terms of tcm (configuration memory read or write time), 
tem (external memory read or write time), tcik (one clock cycle 
time), tcs (time required to switch contexts) and sOT.gau- Compu- 
tation starts with context 0 switching to context 1 which customizes 
the FSM size. The FSM is constructed on a separate context since 



Figure 4: Datapath for Phase 2. 

zero 

Figure 5: FSM template. The OR-gate implements TT[1] = 0. 
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Figure 6: Back edges built through OR-gate insertion. Corresponds to FSM in Figure 3. 

the currently executing context cannot modify itself. Doing do re- 
quires data sharing between contexts which is possible on multicon- 
text FPGAs [13]. In Figure 7, read-em and writejem refer to an 
external memory access while read-cm and writejem refer to a 
context memory access. Note that no external intervention by the 
host machine is required in constructing the FSM. 

Next, the logic on context 2 performs Phase 1 of the KMP algo- 
rithm. Self-reconfiguration is performed via configuration mem- 
ory writes to construct the appropriate back edges. Note how the 
FSM back edge construction alternates with use of the partially con- 
structed FSM (by switching to context-3) alternates every few clock 
cycles. Finally context 0 connects the FSM to the text search dat- 
apath already present on context 2. Since their positions are fixed 
beforehand, the datapath can be interfaced with the runtime gener- 
ated FSM to form the complete logic required for performing Phase 
2 of the KMP algorithm. 

The context switching is similar to context switching of processes 
on a uniprocessor. At a time only one of the FPGA contexts exe- 
cutes and switching to a context resumes its execution from where 
it had stopped earlier due to a context switch. This is possible be- 
cause the state of the active context (bits stored in all the flip-flops) 
are saved before switching to a different context. 

We now derive TM, TME and TE in terms of the times in Figure 
7. TME is the time spent in writccm operations. From the times in 
Figure 7, 

TME = (m — l)s0r-gatetcm (1) 

The remaining time spent in contexts 1, 2 and 3a is TM, the time 
required to compute the FSM mapping and is given by " 

TM = (4m - 2)tcs + (m + l)tem + (7m - 4)tcik       (2) 

Finally, the execution time TE is the time spent in Phase 2 which 

is 

TE (2n )tcik 
m 

(3) 

A few remarks on how the above times were determined— read-em 
P and write-cm P are pipelined and take (m -I- l)tem time. In 
context 3b, only one if statement is executed each iteration taking 
tdk time. Similarly context 3a also takes tcik time. The execution 
time of context 2 depends upon the input pattern and the worst case 
occurs when all characters are identical and the last if statement is 
executed each iteration. The worst case time is used in Tm above. 

5.3   Actual implementation on a conventional 
FPGA 

We implement logic described for contexts 2,3a and 3b in the previ- 
ous section on a Xilinx XC 6216 device. From the implementation 
we determine tcik and tem and tcm

4. And by using a tcs value based 
on published context switching times, we obtain using equations 1, 
2 and 3, an accurate performance estimate of the KMP algorithm 
implemented on an abstract multicontext version of the XC 6216. 
The feasibility of such a device should not be in doubt since the ex- 
tensions we assume have been demonstrated in various multicontext 
devices built so far. 

The VCC Hotworks board was used for the implementation. Re- 
quired logic was specified in structural VHDL and translated to 
EDIF format using velab. XACT 6000 was used for place, route and 
configuration file generation. For debugging and runtime support, 
XC 6200 Inspector and PCI Test were used. The 128 KB of SRAM 
(referred to as external memory henceforth) on the VCC board was 
used to simulate the configuration memory of a multicontext device. 

2This is the worst case TM which corresponds to a pattern containing all 
identical characters except the last one. 

3This is the worst case TE which corresponds to text containing m char- 
acter repetitions in each of which the first m—1 characters match the pattern 
and the last one does not. 

4We make the conservative assumption that tcm = tem. 



context.O 
/♦Stage 1 of FSM construction.*/ 
switch context-1; tcs 

/♦Stage 2 and Phase 1.*/ 
switch context_2; tcs 

/♦Phase 2.*/ 
connect Phase 2 datapath; tcik 
switch context_3; tcs 

+ + i; incstate = 1; tcik 
switch context_3; tcs 

/♦Create back edge for 7r[i] = q.*l 
compute OR gate insertion position; tcik 
write-cm or.gate; sOT_gatetcm 

end if 
end while 
switch context-O; tcs 

context-1 
read-em m; tem 

/♦Connect final state output to state 0 input.*/ 
connect flip-flop m — 1; tcik 
/♦Store pattern characters in pattern registers.*/ 
read-em P; m£em 

write-cm P; mtcm 

switch context.O; tcs 

context.2 
i = l;g = 0;0 
read.em m; tern 

while (f < m) do 
/* One if statment executed every iteration.*/ 
if (P[i] # P[q])ai\d(q == 0) then 

++i; tdk 
/*Create back edge for ir[i] = 0.*/ 
compute OR gate insertion position; tcik 
writexm or-gate; s0r-gatetCm. 

end if 
if (P[t] ^ P[g])and(qr ^ 0) then 

/♦Switch to FSM context and perform q = x[q]*/ 
state_inc=0; tcik 
switch context_3; tcs 

end if 
if (P[i] ==P[g])then 

/♦Switch to FSM context and perform + + q.*l 

context _3a 
if {incstate == 1) then 

if (q == m — 1) then q ■ 
end if 
if (incstate / 1) then 

q = it[q\; tcik 
end if 
switch context.O; tcs 

■■ 0; else + + q; tclk 

context _3b 
i = 0; q = 0; 0 
read_em n; tem 

while (i < n) do 
/* One if statment executed every iteration.*/ 
if (T[i] / P[g])and(g == 0) then 

++i; tdk 
end if 
if (T[i] / P[g])and(g / 0) then 

q = n[q\; tcik 
end if 
if (T[i] == P[g])and(g ^ m - 1) then 

+ + i; + + q; tdk 
end if 
if (T[i] == P[g])and(g == m - 1) then 

/♦Pattern match found.*/ 
+ + i; + + q; + + matches; tcik 

end if 
end while 

Figure 7: KMP algorithm implementation on a multicontext FPGA. 
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gate insertion. Address bits 15:14 and 7:6 are constant and 
known beforehand. 

For Phase 1 we implement on the XC 6216 the Phase 1 datapath, 
OR-gate construction logic and the FSM template. All this logic 
corresponds to contexts 2 and 3a in Figure 7. For each back edge, 
the address in configuration memory where the OR-gate is to be in- 
serted is written out to external memory (in one clock cycle). This 
information is used to modify the configuration file which is used to 
reconfigure the FPGA for computing the next back edge. Knowing 
row and column of a logic cell, it is trivial to compute the corre- 
sponding configuration addresses since the row and column num- 
bers directly form a part of the 6200 address. The logic for OR-gate 
computation is thus quite simple and is shown in Figure 8. Insert- 
ing the OR-gate and making the appropriate connections needs just 
24 bits of configuration data which is embedded in the logic itself. 
Three separate writes are required however since each byte needs to 
be written to a separate address. Thus sOT.gate = 3. For Phase 2 we 
implement logic corresponding to context 3b on the XC 6216. The 
logic searches through text stored in the external memory just as a 
multicontext FPGA would since no context switching is involved in 
this phase. 

and route it using XACT 6000 (68 s) giving TM = 72 s. TME = 1 
ms is the time required to download the configuration onto the XC 
6216 via the PCI bus. To make TM as small as possible, we ex- 
plicitly specify placement of logic and use XACT 6000 only for 
routing. Even then, as can be seen from row 2 Table 2, the pro- 
posed approach is six orders of magnitude faster than the naive use 
of CAD tools. Of course a multicontext FPGA is needed to obtain 
the speedup. A smarter approach would be to write a program that 
directly modifies the binary configuration file based on the input 
pattern. This approach is essentially doing in software what we do 
on the FPGA itself. Row 3 of Table 2 shows the performance of this 
approach6. Although much faster than the CAD tools approach, it 
is still more than 1800 times slower than the proposed approach. 

Table 3 shows the total execution time speedups over other ap- 
proaches. We also compare the performance with a software imple- 
mentation of the KMP algorithm running on a Sun Ultra 1 Model 
140. As can be seen from row 4 of Table 3, reasonable speedups are 
obtained. A key point to note is that the multicontext FPGA is better 
than others for all values of n. This is in contrast to most reported 
results where the problem size must be very large to amortize the 
high mapping time. 

Comparison of the implementation with other FPGA based string 
matching implementations is unfortunately not possible due to dif- 
ferences in the FPGA architectures and the algorithms used. We 
note however, that in [7] TM = 0.16s and TME — 3.05s. 
These times are for a naive string matching implementation on 16 
CAL1024 FPGAs that runs at 20 MHz. Thus, in [7], speedups 
will be obtained only for very large problem sizes due to the high 
TM +TME- 

5.4   Performance Evaluation 

From the implementation description in Section 5.3 it should be 
clear that tcrn = tem = tcik- Based on published literature, we 
make the conservative assumption that tcs = 100ns. We deter- 
mine tcik as follows. For a given pattern size, we increase the 
clock frequency till any further increase makes the implemented 
logic stop working correctly. The corresponding clock period is the 
value of tcik- tcik increases somewhat with pattern size since the 
corresponding FSM is bigger and hence the critical path is longer. 
Plugging all the above values into equations 1, 2 and 3 for pattern 
size m varying from 4 to 16, and text size n = 104 characters, we 
obtain the results shown in Table 1. 

m tcik TM TME TE Total time 

4 81.6 ns 3.7 ps 0.7 ßs 1428 ps 1432 ps 
8 97.6 ns 9.0 ^s 2.1 ßs 1830 ps 1841 ßs 

16 129.6 ns 22.4 ßs 5.8 ps 2511/is 2539 ßs 

Table 1: Performance of the implementation for various values 
of m with n = 104. 

We now compare the mapping time (TM + TME) of the proposed 
multicontext FPGA approach with other approaches. Consider the 
case where CAD tools are used to perform the FSM construction. 
To find TM for this approach, we determine the time taken to com- 
pile a structural VHDL description5 for m = 8 using velab (4 s) 

6   Conclusion 

We have shown dramatic speedups in the time required to map logic 
at runtime onto FPGAs. This is done by the novel approach of de- 
veloping logic that maps logic and putting the former on the FPGA 
itself. As a result CAD tools need to be used just once for each 
problem (to build logic that builds logic and some template logic) 
and not once for every problem instance as is usually done. The 
reduction in mapping time achieved is extremely important because 
FPGAs can do better than ASICs only if the mapping is problem 
instance dependent, which means that the runtime mapping time is 
a part of the overall execution time. 

We show how self-reconfiguration can be performed using multi- 
context FPGAs and how to efficiently realize the above approach 
through self-reconfiguration. We demonstrate our approach by pre- 
senting a detailed implementation of the KMP string matching al- 
gorithm which utilizes the above approach to construct a FSM at 
runtime. An interesting feature of the implementation is that FSM 
construction and use of the FSM alternate every few clock cycles. 
Such a fine grained interleaving of mapping logic and using it would 
not be possible with software in the loop. 

Finally, we implement the KMP algorithm on a conventional FPGA 
and use it to obtain accurate estimates of performance on a multi- 
context device. Our results show high speedups in mapping time 

5We ignore the time required to generate the VHDL code for the given 

input pattern as it would be quite small. In any case, accounting for this 
time would only improve our speedup. The times are obtained on an IBM 
PC with a 200 MHz Pentium Pro and 64 MB RAM. 

6The time TM is for a C program running on a Sun Ultra 1 Model 140. 



Approach TM TME TM +TME Speedup 

Multicontext FPGA 9.0 us 2.1/is 11.1 (IS 1.0 

CAD tool mapping 76 s 1 ms 76 s « 6 x 106 

Software mapping 20 ms 1 ms 21 ms 1892 

Table 2: Speedup in mapping time (m = 8). 

Approach TM + TME + TE Speedup 

n=104 n = 105 n = 10b n=104 n = 10s 7l = 106 

Multicontext FPGA 1.8 ms 18.3 ms 183.1 ms 1.0 1.0 1.0 

CAD tool mapping 76.0 s 76.0 s 76.2 s alO5 «104 «103 

Software mapping 21.8 ms 39.3 ms 204.1 ms 12.1 2.1 1.1 

Sun Ultra 1 30 ms 80 ms 680 ms 16.6 4.4 3.7 

Table 3: Speedups over other approaches for various values of n, with ro=8. 

and reasonable speedups in overall execution time over various ex- 
isting approaches. 

This work has been done as a part of the MAARC (Models, Algo- 
rithms and Architectures for Reconfigurable Computing) project. 
The MAARC project is developing a framework of algorithmic 
techniques for reconfigurable computing and exploiting this tech- 
nology for embedded signal and image processing applications. 
Please see [10] for more information. 
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Abstract. Conventional mapping approaches to Reconfigurable Com- 
puting (RC) utilize CAD tools to perform the technology mapping of a 
high-level design. In comparison with the execution time on the hard- 
ware, extensive amount of time is spent for compilation by the CAD 
tools. However, the long compilation time is not always considered when 
evaluating the time performance of RC solutions. In this paper, we pro- 
pose a domain specific mapping approach- for solving graph problems. 
The key idea is to alleviate the intervention of the CAD tools at map- 
ping time. High-level designs are synthesized with respect to the specific 
domain and are adapted to the input graph instance at run-time. The 
domain is defined by the algorithm and the reconfigurable target. The 
proposed approach leads to predictable RC solutions with superior time 
performance. The time performance metric includes both the mapping 
time and the execution time. For example, in the case of the single-source 
shortest path problem, the estimated run-time speed-up is 106 compared 
with the state-of-the-art. In comparison with software implementations, 
the estimated run-time speed-up is asymptotically 3.75 and can be im- 
proved by further optimization of the hardware design or improvement 
of the configuration time. 

1     Introduction 

Reconfigurable Computing (RC) solutions have shown superior execution times 
for several application domains (e.g. signal & image processing, genetic algo- 
rithms, graph algorithms, cryptography), compared with software and DSP 
based approaches. However, an efficient RC solution must achieve not only min- 
imal execution time, but also minimal time for mapping onto the hardware [5, 

Conventional mapping approaches to RC (see Fig. 1) utilize CAD tools to 
generate hardware designs optimized with respect to execution time and area. 

This research was performed as part of the MAARC project. This work is supported 
by the DARPA Adaptive Computing Systems program under contract no. DABT63- 
96-C-0049 monitored by Fort Hauchuca. 
A. Mei is with the Department of Mathematics of the University of Trento, Italy. 
This work was performed while he was visiting the University of Southern California. 
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Fig. 1. Conventional (left) and Domain Specific (right) Mapping Approaches 

The resulting mappings incur several overheads due to the dominant role of the 
CAD tools. The clock rate and the required area of the RC solution depend 
heavily on the CAD tools used and cannot be estimated reliably at compile 
time. Moreover, the technology mapping phase requires extensive compilation 
time. Usually, several hours of compilation time is required to achieve execution 
time in the range of msec [1,7]. In the case of mappings that are reused over 
time, compilation occurs only once and is not a performance bottleneck. But, for 
mappings that depend on the input problem instance, the mapping time cannot 
be ignored and often becomes a serious performance limitation. 

In this paper we propose a novel RC mapping approach for solving graph 
problems. For each input graph instance, a new mapping is derived. The objective 
is to derive RC solutions with superior time performance. The time performance 
metric is the running time which is defined as the sum of the mapping time 
and the execution time. The key idea of the proposed approach is to reduce the 
intervention of the CAD tools at mapping time. A technology dependent design is 
synthesized based on the specific domain [algorithm,target]. The reconfigurable 
target is now visible to the application developer (see Fig. 1). At run-time, the 
derived design is adapted to the input graph instance. The proposed mapping 
approach eliminates the dominant role of the CAD tools and leads to "real-time" 
RC solutions. Furthermore, the time performance and the area requirements can 
be accurately estimated before compilation. This is particularly important in 
run-time environments where the parameters of the problem are not known a 
priori but time and area constraints must be satisfied. 

In Section 2, the proposed mapping approach is briefly described. In Section 
3, to illustrate our approach, we demonstrate a solution for the single-source 
shortest path problem. Finally, in Section 4, concluding remarks are made. 



2    Domain Specific Mapping 

A simple and natural model is assumed for application development. It consists 
of a host processor, an array of FPGAs, and external memory. The FPGAs 
are organized as a 2D-mesh. The memory stores the configuration data to be 
downloaded to the array and the data required during execution. The role of 
the memory is analogous to the role of the cache memory in a memory system 
in terms of providing a high-speed link between the host and the array. To 
illustrate our ideas, we consider an adaptive logic board from Virtual Computer 
Corporation to map our designs. This board is based on the XC6200 architecture. 

In this paper, we consider graph problems as the application domain. Each 
graph instance leads to a different mapping. Thus, the mapping overhead cannot 
be ignored. Given a specific domain [algorithm,target], the objective is to derive a 
working implementation with superior time performance. The time performance 
metric is the running time which is defined as the sum of the mapping time 
and the execution time (see Fig. 1). To obtain the hardware implementation, 
an algorithm specific skeleton is synthesized based on the specific domain and 
is dynamically adapted to the input graph instance at run-time. The proposed 
mapping approach consists of three major steps (see Fig. 1): 

1. Skeleton design For a given graph problem, a general structure (skeleton) 
is derived based on the characteristics of the specific domain. The skeleton 
consists of modules that correspond to elementary features of the graph 
(i.e. graph vertex). The modules are optimized hardware designs and their 
functionality is determined by the algorithm. Configurations for the modules 
and their interconnection are derived based on the target architecture. 
The interconnection of the modules is fixed and is defined to be general 
enough to capture the individual connectivity of different graph instances. 
Hence, the placement and routing of the modules are less optimized than 
in conventional CAD tools based approaches. The skeleton is derived before 
compilation and its derivation does not affect the running time. In addition, 
the skeleton exploits low-level hardware details of the reconfigurable target 
in terms of logic, placement, and routing. 

2. Adaptation to graph input instance Functional and structural modi- 
fications are performed to the skeleton at run-time. Such modifications are 
dictated by the characteristics of the problem instance based on which the 
configuration of the final layout is derived. 
The functional modifications dynamically add or alter module logic to adapt 
the modules to the input data precision and problem size. The structural 
modifications shape the interconnection of the skeleton based on the char- 
acteristics of the problem instance. 
A software program (Control Program) is also derived to manage the execu- 
tion in the FPGAs. This program schedules the operations and the on-chip 
data flow based on the computational requirements of the problem instance. 
In addition, it coordinates the data flow to/from the hardware implemen- 
tation. Since the interconnection of the skeleton is well established in Step 



1, the execution scheduling essentially corresponds to a software routing for 
the adapted skeleton. 

3. Configuration Finally, the reconfigurable target is configured based on 
the adapted structure derived in Step 2. After the completion of the config- 
uration, the control program is executed on the host to initiate and manage 
the execution on the hardware. 

The proposed approach leads to RC solutions with superior time performance 
compared with conventional mapping approaches. Furthermore, in our approach, 
the skeleton mainly determines the clock rate and the area requirements. Hence, 
reliable time and area estimates are possible before compilation. 

3    The Single-Source Shortest Path problem 

To illustrate our ideas, we demonstrate a mapping scheme for the single-source 
shortest path problem. It is a classical combinatorial problem that arises in many 
optimization problems (e.g. problems of heuristic search, deterministic optimal 
control problems, data routing within a computer communication network) [2]. 
Given a weighted, directed graph and a source vertex, the problem is to find a 
shortest path from the source to every other vertex. 

3.1    The Bellman-Ford Algorithm 

For solving the single-source shortest path problem, we consider the Bellman- 
Ford algorithm. Figure 2 shows the pseudocode of the algorithm [3]. The edge 
weights can be negative. The complexity of the algorithm is O(ne), where n is 
the number of vertices and e is the number of edges. 

The Bellman-Ford algorithm 
Initialize G (V.E) 

FOR each vertex I E V 
DO label(i)«-- 

label(source)«- 0 
Relax edges 

FORk = 1. n-1 
DO FOR each edge (i,j) c E 

DO label(j) «-min {label(j), label(i) + w(i,j)} 
Check for negative-weight cycles 

FOR each edge (i,j) e E 
DO IF label(i) > label(i) + w(l,j) 

THEN return FALSE 
return TRUE 

Problem Size 
# vertices x # edges 

# iterations 
m* (average) 

16x64 4.52 

16 x 128 4.40 

16x240 431 

64x256 4.13 

64x512 4.06 

64 x 1024 4.03 

128x512 5.32 

128x 1024 4.96 

128x2046 4.97 

256 x 1024 6.04 

256x2048 5.75 

256x4096 5.86 

512x2048 7,02 

512x4096 6.71 

512x8192 6.76 

1024x4096 7.40 

1024x8192 7.77 

1024 x16384 7.80 

Fig. 2. The Bellman-Ford Algorithm and experimental results for m* 

For graphs with no negative-weight cycles reachable from the source, the 
algorithm may converge in less than n — 1 iterations [2]. The number of required 
iterations m*, is the height of the shortest path tree of the input graph. This 



height is equal to the maximum number of edges in a shortest, path from the 
source. In the worst case m' = n — 1, where n is the number of the vertices. 

We performed extensive software simulations to determine the relation be- 
tween m* and n — 1 for graphs with no negative-weight cycles. Note that known 
RC solutions [1] always perform n - 1 iterations of the algorithm, regardless 
the value of m*. Figure 2 shows the experimental results for different problem 
sizes. For each problem size, 105 -106 graph instances were randomly generated. 
Then, the value of m* for each graph instance was found and the average over 
all graph instances was calculated. For the considered problem sizes, the number 
of required iterations grows logarithmically as the number of vertices increases. 
For values of e/n smaller than those in the table in Fig. 2, m* starts converging 
to n — 1. 

3.2    Mapping the Bellman-Ford algorithm 

The skeleton The skeleton corresponds to a general graph G(V,E) with n 
vertices and e edges. A weight w(i,j) is assigned for each edge (i, j) 6 E (i.e. 
edge from vertex i to vertex j). The derived structure (see Fig. 3) consists of 
n modules connected in a pipelined fashion. An index id — 0,l,..,n— 1 and a 
label are uniquely associated with each module. Module i corresponds to vertex 
i. The weight of the edges is stored in the memory. No particular ordering of the 
weights is required. Each memory word consists of the weight w(i,j) and the 
associated indices i and j. 

Memory: w(i,j), i, j      Start/Stop 

ilffflfllilllif 

Modules corresponding to n vertices 

w(i,j)=w(i,j)+label(i) 

label(j)=min(label(j),w(i.j)l 

Fig. 3. The skeleton architecture for the Bellman-Ford algorithm 

The Start/Stop module initiates execution on the hardware. An iteration 
corresponds to the e cycles needed to feed once the contents of the memory to the 
modules. The weights w(i, j) are repetitively fed to the modules every e cycles. 
The algorithm terminates after m* iterations. One extra iteration is required 
for the Start/Stop module to detect this termination. If no labels are modified 
during an iteration and m* < n, the graph contains no negative-weight cycles 
reachable from the source and a solution exists. Otherwise, the graph contains 
a negative-weight cycle reachable from the source and no solution exists. 

In each module (see Fig. 4), the values id and label are stored and the re- 
laxation of the corresponding edges is performed. In the upper part, the label is 



added to each incoming weight w(i,j). The index i is compared with id to deter- 
mine if the edge (i,j) is incident from vertex id. The weight w(i,j) is updated 
only if i = id. In the lower part, the weight w(i,j) is relaxed according to the 
min operation of the algorithm as shown in Figure 2. The index j is compared 
with id to determine if the edge (i,j) is incident to the vertex id. The label of the 
vertex id is updated only if j = id and w(i, j) < label. When label is updated, a 
flag U is asserted. 

"(u: 
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Stop 'cut" 

Fig. 4. The structure of the modules (left) and the placement of the skeleton into the 
FPGA array (right) 

At the beginning of each iteration, the signal R is set to 1 by the Start/Stop 
module to reset all the flags. In addition, R resets a register that contains the 
signal Stop in module n — 1. The signal Stop travels through the modules and 
samples all the flags. At the end of each iteration, the Stop signal is sampled by 
the Start/Stop module. If Stop = 0 and m* < n, the execution terminates and 
a solution exists. Otherwise, if Stop = 1 after n iterations, no solution exists. 

The skeleton placement and routing onto the FPGAs array (see Fig. 4) is 
simple and regular. The communication between consecutive modules is uniform 
and differs only at the boundaries of the array. Depending on the number of the 
required modules, a "cut" (Fig. 4) is formed that corresponds to the communi- 
cation links of the last module (Fig. 3). During the adaptation of the skeleton 
the "cut" is formed and the labels in the allocated modules are initialized. The 
execution is managed by a control program executed on the host. This program 
controls the memory for feeding the required weights to the array. In addition, 
it initiates and terminates the execution via the Start/Stop module. 

Area and running time estimates The above module was created based on 
the parametrized libraries for Xilinx 6200 series of FPGAs [9]. The footprint of 
each module was (p+[logn]) x (4p+2[logn] + 10), where p denotes the number 
of bits in each weight/label, and n is the number of vertices. Forp = logn = 16, 4 
modules can be placed in the largest device of the XC6200 family. The memory 



space required was (p + 2[logn]) x e bits, where e is the number of edges. 
The needed memory-array bandwidth is p + 2 log n bits/cycle to support the 
execution. To fully utilize the benefits of the FastMAP™ interface, 140 MB/sec 
bandwidth is required. Under this assumption, the largest XC6200 device can 
be configured in 165 //sec using wildcards [8]. 

The algorithm terminates after (m* + 1) x e + 2n cycles, where m* is the 
number of required iterations for a given graph. One cycle corresponds to the 
clock period of the skeleton. The clock rate for the skeleton was estimated to be 
at least 15 MHz for p=16 bits, and at least 25 MHz for p=8 bits. In the clock 
rate analysis, all the overheads caused by the routing were considered. The clock 
rate was determined mainly by the carry-chain adder of the modules. By using a 
faster adder, improvements in the clock rate are possible. The mapping time was 
in the range of msec. The above mapping time analysis is based on the timings 
for the FastMAP™ interface in the Xilinx 6200 series of FPGAs databook [8]. 

3.3     Performance Comparison 

In [1], the shortest path problem is solved by using Dynamic Computation Struc- 
tures (DCSs). The key characteristic of the solution is the mapping of each edge 
onto a physical wire. The experiments considered only problems with an average 
out-degree of 4 and a maximum in-degree of 8. For the instances considered, the 
compilation time was 4-16 hours assuming that a network of 10 workstations 
was available. Extensive time was spent for placement and routing. Hence, the 
resulting mapping time eliminated any gains achieved by fast execution time. To 
make fair comparisons with our solution, we assumed that the available band- 
width for configuring the array is 4 MB/sec as in [1]. Even though, the mapping 
time for our solution was estimated to be in the msec range (see Fig. 5). 

Check tor 
negative-weight cycles Mapping time 

# of iterations 

Execution time 

# of cycles Clock rate 
Area requirements 

Solution in [1] NO > 4 hours n-1 n-1 Q( 1/n2) Q(n4) 

Our Solution YES - 100 msec m* (m*+1 )e+2n 
independent 

of n 0(n+e) 

+ a network of 10 workstations was used 

-M- memory-array bandwidth 4MB/sec is assumed as in [ 1 ] 

Fig. 5. Performance comparisons with the solution in [l] 

Besides the mapping overhead, the mapping of edges into physical wires 
resulted in several limitations in [1], with respect to the clock rate and the area 
requirements. The clock rate depended on the longest wire which is Q(n2) in 
the worst case, where n is the number of vertices. This remark is supported by 
well-known theoretical results [6] which show that in the worst case, a graph 
takes Q(nA) area to be laid out, where n is the number of vertices, and that the 
longest wire is Q(n2) long. Therefore, as n increases, the execution time of their 
solution drops dramatically. For n = 16,64,128, the execution time was on the 



average 1.5-2 times faster than our approach while it became 1.3 times slower 
for n = 256. For larger n, the degradation of performance in [1] is expected 
to be more severe. Considering both the execution and the mapping time, the 
resulting speed-up comparing with the solution in [1] was 106. 

Also, in [1], n - 1 iterations were always executed and negative-weight cycles 
could not be detected. If checking for algorithm convergence and negative-weight 
cycles were included in the design, the resulting longest wire would increase 
further drastically affecting the clock rate and the excution time. Finally, the 
time performance and the area requirements in [1] are determined completely 
by the efficiency of the CAD tools and no reliable estimates can be made before 
compilation. 

1000 1500 

n: # of vertices 

Fig. 6. Comparison of running time: our approach v.s. software implementation. 

Area comparisons are difficult to make since different FPGAs were used in 
[1]. Furthermore, the considered graph instances in [1] were not indicative of 
the entire problem space since e/n = 4. For the considered instances in [1], one 
XC4013 FPGA was allocated per vertex but, as e/n increases, the area required 
grows rapidly. In our solution, 0(n) area for FPGAs and 0(e) memory were 
required. Moreover, our design is a modular design and can be easily adapted to 
different graph instances without complete redesign. 

Software simulations were also performed to make time performance compar- 
isons with uniprocessor-based solutions. The algorithm that was mapped onto 
the hardware was also implemented in C language. The software experiments 
were performed on a Sun ULTRA 1 with 64 MB of memory and a clock rate of 
143 MHz. No limitations on the in/out-degree of the vertices were assumed. For 
each problem instance, 104 - 106 graph instances were randomly generated and 
the average running time was calculated. The compilation time on the uniproces- 
sor to obtain the executable was not considered in the comparisons. Moreover, 
the data were assumed to be in the memory before execution and no cache effects 
were considered. Under these assumptions, on the average, an edge was relaxed 
every 250 nsec. 



For the hardware implementation, it was assumed that p=16 bits. The map- 
ping time was proportional to the number of vertices of the input graph. Both 
the mapping and the execution time were considered in the comparisons. The 
achieved run-time speed-up was asymptotically 3.75. However, for the consid- 
ered problem sizes (see Fig. 6), lower speed-up was observed. As e/n increases, 
the mapping time overhead is amortized over the corresponding execution time. 
Hence, shorter configuration time would result in convergence to the speed-up 
bound (3.75) for smaller e/n and n. 

4    Conclusions 

In this paper, a domain specific mapping approach was introduced to solve graph 
problems on FPGAs. Such problems depend on the input graph instance and 
constitute a suitable application domain to exploit reconfigurability. The pro- 
posed approach reduces the dominant role of CAD tools and leads to RC solu- 
tions with superior time performance. For example, for the single-source shortest 
path problem, a speed-up of 106 was shown compared with [1]. In comparison 
with software solutions, an asymptotic speed-up of 3.75 was also shown. 

Future work includes more graph problems examples to further validate our 
mapping approach. In addition, we will focus on specific instances of NP-hard 
problems where the execution time is comparable to the corresponding mapping 
time provided by general purpose CAD tools based approaches. We believe that 
the proposed approach combined with a software/hardware co-design framework 
can efficiently attack specific instances of NP-hard problems. 
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Abstract 

Reconfigurable architectures promise significant 
performance benefits by customizing the configurations 
to suit the computations. Variable precision for com- 
putations is one important method of customization 
for which reconfigurable architectures are well suited. 
The precision of the operations can be modified dy- 
namically at run-time to match the precision of the 
operands. Though the advantages of reconfigurable ar- 
chitectures for dynamic precision have been discussed 
before, we are not aware of any work which analyzes 
the qualitative and quantitative benefits which can be 
achieved. This paper develops a formal methodology 
for dynamic precision management. We show how 
the precision requirements can be analyzed for typi- 
cal computations in loops by computing the precision 
variation curve. We develop algorithms to generate 
optimal schedules of configurations using the precision 
variation curves. Using our approach, we demonstrate 
25%-37% improvement in the total execution time of 
an example loop computation on the XC6200 device. 

1     Introduction 

Reconfigurable hardware has the potential to en- 
hance the performance of many computer applica- 
tions. The hardware resources can be tuned to the 
algorithm and the software overhead can be avoided 
to achieve superior performance compared to conven- 
tional microprocessors. Reconfigurable hardware also 
possesses more flexibility than ASIC hardware and can 
be utilized for a more diverse set of computations. 

"This work was supported by the DARPA Adaptive Comput- 
ing Systems Program under contract DABT63-96-C-0049 mon- 
itored by Fort Hauchuca. 

There are several methods of generating custom hard- 
ware configurations suited to the computations to be 
performed. The ability to perform variable precision 
arithmetic is one of the significant advantages of re- 
configurable hardware. 

Reconfigurable hardware such as FPGAs [14, 16] 
and various custom computing machines (CCMs) [2, 
4, 9, 15] contain fine-grained configurable resources. 
Such fine-grained configurable logic can be utilized to 
build computing modules of various sizes. The mod- 
ules can be built to perform computations on various 
bit-widths. For example, it is possible to build a stan- 
dard 16-bit x 16-bit multiplier or a 8-bit x 12-bit multi- 
plier using reconfigurable hardware. The 8-bit x 12-bit 
multiplier would consume less area and execute faster 
than the standard 16-bit x 16-bit multiplier. In con- 
figurable hardware, using higher precision usually re- 
sults in wastage of resources such as logic area, time 
and power. For example, performing 32-bit multi- 
plications when the operands have only 8 significant 
bits will typically require 16 times more area and 4 
times more execution time. Redundant computations 
also expend more clock cycles and increase the power 
consumption. The ability to construct modules of re- 
quired precision is one of the key advantages of recon- 
figurable hardware. Variable precision computations 
can be implemented by using a statte approach. In 
the static approach, the precision of the operands and 
operation is fixed at compile time and can be different 
from the standard precision(e.g. 8-bit, 16-bit, 32-bit, 
etc.) used on microprocessors. Reconfigurable archi- 
tectures also support dynamic precision, which is the 
ability of the hardware to change its precision at run- 
time in response to variant precision demands of the 
algorithm. 

Applications are typically developed to perform op- 
erations on standard 32-bit variables. The precision of 
the operands and the operations is sufficient to guar- 
antee the correctness of the operations in the worst 



case. But in most applications, the actual precision 
required for computations is usually much lower than 
the precision implemented. This is typically the case 
in computations which accumulate values as the com- 
putations progress, as in iterative computations such 
as loops. The precision of the operands increases as 
the iterations of the loops progress. Loop computa- 
tions offer the most potential for pipelining and paral- 
lelizing in most applications. Configurable hardware 
is an excellent match for computations with fine-grain 
pipelining and parallelism. In addition to the perfor- 
mance benefits obtained by mapping of computations 
in a loop onto configurable hardware, loops can also 
take advantage of variable precision. 

Applications are currently mapped to reconfig- 
urable hardware either by high level behavioral com- 
pilers or exhaustive hand-tooled designs. To extract 
the performance advantages of configurable hardware 
for variable precision, the trade-offs in performing 
computations using a very high precision versus chang- 
ing the precision of computations as the execution pro- 
gresses need to be evaluated. Performing this analysis 
by hand and tuning the implementation to the require- 
ments of the application entails significant effort on 
the part of the designer. Dynamic precision manage- 
ment can result in implementations with lower exe- 
cution times, logic area and power consumption com- 
pared to previous approaches. 

For managing dynamic precision in loop compu- 
tations, intelligent choices on the use of appropriate 
modules from the available set of modules with differ- 
ent precision need to be made. These configurations 
then have to be scheduled to achieve optimal execu- 
tion schedule. We consider a schedule to be optimal if 
the schedule has minimum total execution time, which 
includes both the execution time in various configura- 
tions and the reconfiguration time between configura- 
tions. Automatic computation of the actual precision 
and configurations to be utilized in the computations 
is the focus of this paper. Currently, a framework 
for managing dynamic precision computations for any 
class of computations does not exist. We develop such 
a framework for loop computations in this paper. 

In Section 2 we give an overview of our approach to 
the dynamic precision management problem. Each of 
the steps in our approach are then described in de- 
tail in the later sections. Analysis of the required 
precision for loop computations is discussed in Sec- 
tion 4. Section 5 describes our Hybrid System Ar- 
chitecture Model(HySAM) of reconfigurable architec- 
tures. The variable precision loop mapping problem is 
defined and our Dynamic Precision Management Al- 

gorithm(DPMA) for computing the optimal schedule 
is presented in Section 6. We illustrate the utility of 
our approach by showing an example mapping in Sec- 
tion 7. Conclusions and some related problems are 
discussed in Section 8. 

2    Overview of Our Approach 

Application Loop 
Computations 

Sample 

Data Sets 

Variable 
Precision 

Configurations 

f   Theoretical   \       C    Run-time   ^ 
I       Analysis     J       I       Analysis     J 

ir    \< 

Precision 
Variation 

Curve 

'   HySAM 
Architecture 

Model 

(    Dynami namic Precision Management Algorithm (DPMA) 
) 

Optimal 
Schedule 

Figure 1: Overview of our approach for dynamic preci- 
sion management in loops(shaded and rounded regions 
indicate our contributions) 

This paper details an approach to managing the 
task of adapting the precision of the implementation 
to that of the application. An overview of our ap- 
proach is shown in Figure 1. We focus our efforts on 
dynamic precision management for loop computations 
since they are the most compute intensive tasks in 
typical applications. For the loop computations in ap- 
plications, we describe an approach to determine the 
required precision using theoretical analysis and run- 
time instrumentation. The required precision for the 
computations in a loop can be expressed as the varia- 
tion in precision as the iterations of the loop progress. 
We introduce the concept of the precision variation 
curve to represent this variation. The precision varia- 
tion curve for the operations and operands in the loop 
can be identified either by theoretical analysis or by 
run-time analysis as described in Section 4. 

Given the required precision for the iterations of 
the loop, we need to determine the mapping of the 
iterations to a set of configurations which are used to 



execute the operations in the loop. For each itera- 
tion the precision of the configuration which executes 
the iteration should be equal to or greater than the 
required precision for that iteration. The configura- 
tions are chosen from the set of library components 
or parameterized modules that are provided for the 
architecture. 

Given the requirements for the precision of the com- 
putations and the available module configurations, 
we compute the set of configurations and the sched- 
ule of reconfigurations. We compute these by de- 
veloping algorithmic techniques for precision manage- 
ment. First, we develop an abstract model of reconfig- 
urable architectures, the Hybrid System Architecture 
Model(HySAM). This parameterized abstract model 
is general enough to capture a wide range of config- 
urable systems. We define the precision management 
problem in loop computations using our model. A 
dynamic precision management algorithm is then de- 
veloped to compute the optimal sequence of configura- 
tions for minimizing the total execution time including 
the reconfiguration time. 

3    Related Work 

There has been significant research in the area of 
mapping applications to configurable computing in the 
last decade [2, 5, 8, 15]. Customizing configurable 
hardware to suit the computations has been acknowl- 
edged as the most significant advantage of such archi- 
tectures. Some researchers have adapted the hardware 
to perform computations with exactly the required 
precision for the computations [11, 13]. Such static 
approaches do not exploit the ability of configurable 
hardware to be adapted to the exact required precision 
as the computations progress. The maximum possi- 
ble precision of variables which is determined in the 
static approach can still involve execution with super- 
fluous precision and unnecessary overheads. Several 
efforts have also focused on developing parameterized 
libraries and components, precision being one of the 
parameters. Most FPGA device vendors provide such 
highly optimized parameterized libraries for their ar- 
chitectures. Efforts have also been made to generate 
such modules using high level descriptions [3, 6]. 

We are not aware of any formal framework to study 
and analyze the dynamic precision variation in appli- 
cations. Algorithmic techniques to utilize configurable 
computing to dynamically vary the precision of com- 
putations have not been demonstrated previously. 

4    Precision Requirement Analysis 

The precision required for the computations in an 
application might not only vary with the specific op- 
eration but also change as the execution progresses. 
For iterative computations in which values are accu- 
mulated over the execution time of the application, 
the precision varies as the iterations progress. Loop 
computations are the most typical iterative computa- 
tions which show such behavior. In addition to the 
varying precision, loops are the most compute inten- 
sive tasks in a program. In this paper we focus on 
the varying precision of operations in loop computa- 
tions. This variation can be measured by analyzing 
the variation of the precision of the operands and the 
operations as the iterations progress. We represent 
this variation in terms of the loop iterations by using 
the precision variation curve. 

4.1 Precision Variation Curve 

The precision variation curve facilitates the repre- 
sentation of the notion of the variation in the precision 
of the operands and the operation as the execution 
of the loop progresses. A simple method to repre- 
sent such a variation is to indicate the precision of the 
operand for each iteration so that the precision is de- 
fined for the whole iteration space. But as we shall 
show in the subsequent sections, the precision usually 
varies very slowly as the iterations progress. Thus the 
precision variation curve can be represented by spec- 
ifying the points where the precision of the operands 
or the operation changes. 
Definition: The precision variation curve for a given 
operation or operand in a loop computation can be 
represented by the sequence <£,, P,->, where l<i<w+ 
1 and Lu+i = N + 1. For 1 < i < u, P,- is the min- 
imum precision required for the computing the itera- 
tions Li.. .£,-+i — 1. Note that the hardware has to 
support at least a precision of P; to execute the itera- 
tions Li.. .Li+i — 1 and produce the correct result. 

Examples of precision variation curves are shown 
in Figure 3. We develop theoretical and run-time in- 
strumentation methods for determining the precision 
variation curve in the next two sections. 

4.2 Theoretical Analysis of Loops 

We can theoretically determine the precision varia- 
tion curve for the operations in a given computation. 
The precision of computed variables in a loop is de- 
termined by the precision of the variables before the 
iteration, the number of iterations and the operations 



DO 10 1=1,N 
DO 20 J=1,N 

RSQ(J)  = RSQ(J)+XDIFF(I,J)*YDIFF(I)J) 
20      IF (MAXQ.LT.RSQ(J)) THEN 

MAXQ = RSQ(J) 
POVERR = POVERR / MAXQ 

10 VIRTXY = VIRTXY + MAXQ  * SCALE(I) 

Figure 2: Example code for simulations 

performed on the variable. For each type of arithmetic 
operation, the maximum possible precision of the re- 
sult can be expressed using the above values. For ex- 
ample, the precision of a variable ^(initially 0) after 
Ar iterations of a loop which contains the statement 
X = A" + C is bounded by 

Pr{X) < Pr{C) + log{N + 1) 

where Pr(X) denotes the bit size of the variable X. 
The analysis is not limited to simple expressions, but 
extends to complex arithmetic expressions in loops. 
For recursive expressions in loops where the value of 
the variable A' in iteration i is given by A,-, if 

X{ = ci * Aj, + c2 * XJ2 + ... + ck*Xjk = Ej=i cj * Xj, 

then the upper bound on the precision of A',- is given 
by 

Pr(Xi) < (i - 1) * logC + (f - 1) * logk + Pr{Xx) 

where C = max[ci,C2,.. -,Ck], the maximum of the 
constant coefficients. Similarly, for the expression 
X = X x C, the upper bound of precision for A with 
an initial value 1 and after N iterations is given by 

Pr(X) < N * Pr{C) 

The precision variation curve can be computed the- 
oretically for all expressions in loops which are polyno- 
mials of variables and constants. Since most scientific 
applications consist of many such computations, the- 
oretical analysis can be performed for all such compu- 
tations. It is to be noted however, that such an anal- 
ysis is not entirely feasible for floating point computa- 
tions. But the analysis can be performed for integer 
and fixed point data and computations. This does not 
limit the applicability of the analysis or the algorithms 
we present later as many signal and image processing 
computations and several benchmark problems oper- 
ate on integer and fixed point data. The remaining 
computations can be implemented with their default 
maximum precision. 
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Figure 3:  Precision Variation Curves for RSQ using 
theoretical and run-time analysis 

4.3    Run-time Analysis 

Theoretical analysis of expressions in loops com- 
putes the upper bounds on the precision of the vari- 
ables and computations. This determines the mini- 
mum precision required to represent these variables. 
The estimates using theoretical analysis are conser- 
vative and can usually be much higher than the ac- 
tual precision of the operands. For example, us- 
ing the above analysis for the Fibonacci series A,- = 
A,_i + A,_2, we obtain Pr(Xi) — i - 1 and hence, 
Pr{X15) - 14. But, A15 = 610 which needs only 
10 bits. Even in the case when the bound is actually 
tight for expressions, the actual precision might be 
lower than theoretical estimate. This can occur when 
the data inputs are assumed to have maximum preci- 
sion, but are actually randomly distributed over the 
complete input range. Using theoretical analysis can 
provide significant performance benefits by dynamic 
precision management. We discuss below how these 
benefits can be augmented by using profiling based 
analysis. 

For example, consider the code segment shown in 
Figure 2. We performed simulations with uniformly 
distributed random values for the 8-bit non-negative 
data inputs XDIFF and YDIFF. The precision of 
the RSQ variable was measured by tracing the ear- 
liest iteration in which a new higher significant bit 
was set. Since the maximum bits in the result of 
XDIFF(I, J) * YDIFF(I, J) are 16, the iteration in 
which the fcth most significant bit of the result is set 
is given by 2k~16. The precision variation curves ob- 
tained using the theoretical and run-time analysis are 
plotted in Figure 3. The actual precision required for 
the computations is significantly lower than the theo- 
retical estimate as evident from the graph. 



This run-time measurements illustrate a very im- 
portant advantage in exploiting variable precision 
computations. The actual XDIFF and YDIFF val- 
ues have significantly lower precision than the max- 
imum possible precision of 8 bits. The assumption 
of maximum precision for all the input XDIFF and 
YDIFF values has a rolling effect on precision of 
other operands and operations. The repeated accu- 
mulation of the product of these numbers results in a 
precision difference in the final values which is much 
larger than the precision difference for one value. It 
is clearly revealed in simulations where the actual re- 
quired precision is much lower than the theoretical 
precision. 

For computations which do not have a tight bound 
on the precision and for computations with complex 
control flow, computing the required precision by us- 
ing run-time statistics is a viable alternative. The ap- 
plication can be instrumented to measure the precision 
of the different variables and the knowledge can be 
utilized by the mapping tool or the compiler to iden- 
tify the required precision at various program points. 
Though we do not address the run-time mapping is- 
sues in this paper, it is also possible to determine 
the precision of the operands and the operations by 
examining the values at run-time and modifying the 
precision of the operations on the fly. In this pa- 
per we focus on run-time precision management based 
on the knowledge of the required precision at com- 
pile(mapping) time. The required precision can either 
be analyzed automatically or can be user specified. 

5    Hybrid System Architecture Model 
(HySAM) 

To realize a formal framework for algorithm devel- 
opment, we developed the Hybrid System Architecture 
Model(HySAM) of reconfigurable architectures. The 
Hybrid System Architecture is a general architecture 
consisting of a conventional microprocessor with addi- 
tional Configurable Logic Unit(CLU). Figure 4 shows 
the architecture of the HySAM model. The architec- 
ture consists of a conventional microprocessor, stan- 
dard memory, configurable logic, configuration mem- 
ory and data buffers communicating through an inter- 
connection network. 

Key parameters of the Hybrid System Architecture 
Model(HySAM) are outlined below. 

F :   Set of functions F\... Fn which can be per- 
formed on configurable logic. 

RISC Memory 

Data Buffers 

Configurable! 
Logic 
Unit 

Configuration 
Cache 

Figure      4: Hybrid      System      Architecture 
Model(HySAM) 

C : Set of possible configurations Ci... Cm of the 
Configurable Logic Unit. 

Pr(Cj)  : Precision of the configuration Cj. 

tij : Execution time of function F,- in configuration 
Cj. 

Rij : Reconfiguration cost in changing configuration 
from Ci to Cj. 

The parameterized HySAM models a wide range 
of systems from board level architectures to systems 
on a chip. Such systems include SPLASH [2], DEC 
PeRLE [15], Oxford HARP [5], Berkeley Garp [4], 
NSC NAPA1000 [9], Sanders CSRC [10] among others. 
The values for each of the parameters establish the 
architecture and also dictate the class of applications 
which can be effectively mapped onto the architecture. 
For example, a system on a chip architecture would 
have potentially faster reconfiguration times(lower k 
and K) than a board level architecture. 

The set of functions(F) is the set of modules or li- 
brary components which are available or implemented 
for the given architecture. Configurations(C) are de- 
veloped by mapping one or more of such functions 
onto the available hardware architecture. A single 
function can have multiple configurations which can 
potentially execute the function. Each of the config- 
urations might have different algorithm, area, preci- 
sion, time and power characteristics. For example, a 
function such as division can be implemented using 
different algorithms such as iterative multiplication or 
iterative subtraction in different configurations. The 
execution time of a function F,- in a configuration Cj 
is given by tij. The cost of reconfiguring the hardware 
from a configuration d to a configuration Cj is given 
by Rij. The reconfiguration cost includes the cost of 



memory access for the configurations, the configura- 
tion data transfer cost and the cost of activating the 
configuration on the hardware. 

5.1     Configurations for Variable Precision 

Efficient modules are being developed by hand de- 
sign, by automatic mapping and by generators [3, 6]. 
Modules for executing computations with a specified 
precision have also been explored. Some of the mod- 
ules are parameterized which facilitate the construc- 
tion of a configuration which can execute a compu- 
tation of any given precision within a range of val- 
ues. They are usually either statically developed de- 
signs such as the Xilinx LogicBlox or dynamically con- 
structed using generators [3, 6]. The modules are usu- 
ally optimized to exploit the nature of the computa- 
tion for any given precision. Modules designed for 
specific architectures also exploit the hardware fea- 
tures which are available to enhance performance. For 
example, addition and multiplication modules exploit 
the carry chains available at nibble or byte boundaries 
in many FPGA architectures. 

In this paper we assume that the set of modules 
which can execute the required arithmetic operations 
are available. Each function(such as multiplication) 
can have several configurations, each of which exe- 
cutes the operation with different precision. It is not 
necessary that a given operation have configurations 
which execute the operation with all the possible pre- 
cision values. Note that each configuration is limited 
to the execution of one function in this paper though 
the HySAM model is actually more powerful. Hence, 
we represent i,j as tcj is the rest of the paper. 

6    Dynamic Precision Management 

Given the precision variation curve for the loop, we 
need to determine the mapping of the iterations to a 
set of configurations which are used to execute the op- 
erations in the loop. For each iteration, the precision 
of the corresponding configuration which executes the 
iteration should be equal to or greater than the re- 
quired precision for that iteration. But, reconfiguring 
the hardware whenever the required precision changes 
can result in significant reconfiguration overheads. For 
architectures in which the reconfiguration times are 
much higher than the execution times, the reconfig- 
uration overhead might be prohibitive. Thus, it is 
necessary to identify the optimal set of configurations 
which result in minimization of the overall execution 
cost, including the reconfiguration cost. Also, the set 

of configurations which are available for executing an 
operation might not encompass all the possible preci- 
sion values that are required. Some of the operations 
will have to be executed with more precision than is 
necessary in the absence of configurations with the ex- 
act precision. 

We present the Precision Management Problem and 
the Dynamic Precision Management Algorithm based 
on the following assumptions: 

• Higher precision computations require more re- 
sources such as power, logic area and computa- 
tion time(tcj)- 

• The required precision for the computations 
varies monotonically. This is true for most com- 
putations which accumulate values as the loop it- 
erations progress. The algorithms we describe can 
be applied to monotonic subsequences with opti- 
mal schedules for each subsequence individually. 

• The algorithm determines the optimal schedule 
for a given precision variation curve. When the 
actual variation is different from the precision 
variation curve, the schedule might not be op- 
timal. 

Precision Management Problem(PMP) 

Input: An operation in a loop with N iterations of 
the loop body and the precision variation curve for 
the operation. The precision variation curve is given 
as a sequence of pairs <L{, F,->, where l<i<w-|-l and 
£„+i = N + 1. For l<i<w, Pi is the minimum preci- 
sion required for computing the operation in iterations 
Li.. .Lj+i — 1. 

Output: An optimal schedule of configurations 
S =<QjtCj>, where l<j<v + 1 and Q„+1 = N + 1. 
For l<j<v, Cj is the configuration used for iterations 
Qj .. -Qj+i — 1. 

A schedule S is said to be valid if it satisfies the preci- 
sion requirement for all the iterations of the loop, i.e., 
VA' s.t. 1<K< N, if 

Prj    =    Pj, for some i s.t. L, < K < L,+i 

Pro    =    Pr(Cj) for some j s.t. Qj < K < Qj+i 

then Prj < Pro (see Figure 5). 

An optimal schedule has the minimum total execution 
cost E which includes the reconfiguration cost among 
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Figure 5: Constraint on required and scheduled Pre- 
cision Variation Curves 

all valid schedules. The cost of a schedule is given by 

V 

E = X)[(Q,-+i - Qj) x tCi + Rj-ij] 

where tc is time for executing one iteration of the 
loop in configuration Cj and Rj-ij is the reconfigura- 
tion cost between configurations Cj-\ and Cj. 0 

To minimize the total execution cost, both the exe- 
cution cost and the reconfiguration cost have to be ex- 
amined. The set of configurations and the schedule of 
reconfigurations need to be determined. We first show 
that the points of reconfiguration are the subset of the 
points where the required precision changes, i.e., Q C 
L, where Q = {Qi,...,Qv} and L = {Li,...,Lu}. 

Lemma 1. Given the definitions in the PMP prob- 
lem, the schedule S of configurations satisfies the prop- 
erty Q C L. 
Proof: Assume that Q % L in the optimal schedule S. 
Then there exists at least one point of reconfiguration 
which is not a point of change of required precision. 

3i :Qi$L 

Without loss of generality, 

3j : Qi-i < Ij-i < Qi <Lj < Qi+i 

Consider the schedule 5' where the configurations are 
the same as S but the reconfiguration points are dif- 
ferent: 

S = [Qi.. .Qi-iQiQi+iQi+2 ...Qn] 

S' = [<2i.. .Qi-iLjQi+iQi+2 ■ ■ -Qn] 

tc, is the cost of executing one iteration in configu- 
ration d. Since we assume precision variation to be 
monotonic, Pr(C,-+i) > Pr(Ci) and tc,+l > tc,- The 
difference in execution cost of the two schedules is 

S'-S   =   (tciiLj-Qi-J+tc+AQi+i-Lj)) 
-(tcAQi - Qi-i) + tc,+AQi+i - Qi)) 

-   tCiiLj-Qi-i-Qi + Qi-i) 

+tc,+1{Qi+i - Lj - Qi+i + Qi) 

=    (tc, - tci+1)(Lj - Qi) 

<   0 

Since Lj>Q, and <Ci«c,+I, S' - 5<0. The new 
schedule has lower cost and hence a schedule with re- 
configuration points which is the subset of the preci- 
sion change points has lower execution cost. Since S 
is the optimal schedule our assumption must be incor- 
rect. Hence, Q C L. O 

6.1    Precision Management Algorithms 

To determine the choice of configuration at each L,-, 
we can use a greedy approach where the best configu- 
ration with the required precision is chosen at each L,-. 
The best configuration Cj(Cj G Ci,..., Cm) is given 
by the configuration which has the lowest execution 
cost tc ■ But the greedy algorithm will not provide 
the optimal solution due to two reasons: 

• The greedy approach does not consider the recon- 
figuration costs which are incurred at future re- 
configuration points. A configuration with higher 
execution cost might have a lower reconfiguration 
cost at the next step, making it a better choice 
for executing the given iterations. 

• With significant reconfiguration costs, it is possi- 
ble that we use a higher precision configuration 
than required(even if exact precision configura- 
tion is available in C), to avoid a reconfiguration 
step in future. The greedy approach does not con- 
sider this case and thus can result in non-optimal 
schedule. 

In the following, we present an algorithm based 
on dynamic programming which computes an optimal 
schedule having the minimum execution cost including 
the reconfiguration cost. 

Dynamic Precision Management Algorithm 
(DPMA) 
Let Eij be the execution cost for executing up to L,- 
iterations with Cj being the last configuration.  The 



initial values of E are assigned as EQJ — 0,1 < j < m. 
For each of the possible configurations Cj which can 
execute iterations from L, we have to compute the 
optimal sequence of configurations ending in Cj. For 
1 < j < m. we compute E,j by using the recursive 
equation: 

Ei+ij    =    (li+i - Li) x tCj + mink(Eik + Rkj) 

1 < k < m 
if Pr(Cj) > Pi 

=    oc   otherwise 

For each configuration, we have examined all the 
possible paths in executing the iterations L, .. .L,+i — 
1 once we have executed iterations 1... L,- — 1. Note 
that we examine all configurations such that Pr(Cj) > 
Pi which assures that we consider the case of using a 
higher precision than required(Pr(Cj) = Pi). If each 
of the values Eik is optimal then the value -Ei-f ij is 
optimal. Hence we can compute the optimal schedule 
of configurations S by computing the Eij values. The 
minimum cost for execution of the loop is given by 
mirij [Euj]. 

We can use dynamic programming to compute the 
Eij values. Computing one Eij value takes 0(m) time 
since there are m configurations. The total number of 
values to be computed is O(um), therefore the total 
time complexity of the algorithm is 0(um2). Q 

7    An Illustrative Example 

We illustrate our approach by mapping the mul- 
tiplication operation from the example code segment 
presented in Figure 2. 

DO  10 I=1,N 

10 VIRTXY = VIRTXY + MAXQ * SCALE(I) 

The input data SCALE(I) is an 8-bit integer. The 
precision of MAXQ has been analyzed in Section 4.3. 
We present the same result in the form of a table in 
Table 1. 

We have abstracted the Xilinx XC6200 series de- 
vice by using our model. The parameters specified 
are for the HySAM model and have been evaluated 
from XC6200 documentation [16, 7]. The footprint of 
each precision is given by the equation 4 x row x col, 
where row and col are the precisions of the two in- 
puts. For the configurations relevant to mapping the 

Pi Li L'i Pi Li L'i 
Pr Theore- Simu- Pr Theore- Simu- 

tical lated tical lated 

16 1 1 22 64 195 

17 2 2 23 128 412 

18 4 5 24 256 897 

19 8 14 25 512 - 

20 16 35 26 1024 - 

21 32 87 

Table 1: Theoretical and simulated iteration numbers 
for N = 1024 

Configuration Precision Time Reconfig. 

Ci Pr(d) tCi (ns) Roi (ns) 

Ci 8x8 140 5120 

c2 8x 16 250 10240 

c3 8x 20 300 12800 

c4 8x 24 400 15360 

c5 8x28 520 17920 

c6 8x32* *640 20480 

Table 2: HySAM model parameters for XC6200 mul- 
tiplier configurations (* values are estimates based on 
XC6264 device) 

given operation, row is 8. Reconfiguration times are 
based on a 32-bit data bus running at 50MHz. It is 
possible to design modular configurations which can 
be reconfigured in lesser time using partial reconfigu- 
ration. For this mapping, we assumed that complete 
reconfiguration is needed for each configuration. The 
parameters for various multiplier configurations with 
different precisions are listed in Table 2. 

We measured the total execution time for the loop 
computations using five different approaches. The 
first two approaches do not exploit the dynamic pre- 
cision by varying the precision of the operation at 
run-time. The different approaches and the schedule 
of configurations(«9j,Cj>) in each approach are de- 
scribed below. 

• Raw: The first approach uses a static configura- 
tion of 8bit x Z2bit precision for all the iterations 
of the loop. 
Schedule: <\,CQ> 

• Static: We utilize the theoretical analysis where 
we determine that the highest precision required 
for 1024 iterations is only 8bit x 28bit. But the 
configuration is still static and is used for all the 
iterations. 
Schedule: <l,Cs> 



Greedy: We used the greedy algorithm (see Sec- 
tion 6.1) to compute the schedule of configura- 
tions to be utilized for the computations. The 
precision of the operation is varied dynamically 
but the greedy choice is based on the lowest exe- 
cution time for each configuration. 
Schedule: <1,C2>,<2,C3>,<32,C4>,<512,C5> 

DPMA: Our dynamic precision management al- 
gorithm was utilized to compute the optimal 
schedule using the precision variation curve. This 
approach uses higher execution cost configura- 
tions for some of the computations but reduces 
the overall execution cost by performing lesser 
number of reconfigurations. 
Schedule: <1,C4>,<512,C5> 

DPMA-run: In this approach we performed 
run-time analysis of the loop and utilized the pre- 
cision variation curve from the run-time analysis 
as the input to the algorithm. This approach can 
be implemented easily by adding a run-time check 
of the precision, which needs very small amount 
of additional logic and no extra clock-cycles if the 
precision remains within the run-time statistics. 
Schedule: <1,C4> 

Algorithm Execution Reconfiguration Total 
Time (ns) Time (ns) (ns) 

Raw 655360 20480 675840 
Static 532480 17920 550400 

Greedy 468010 56320 524330 
DPMA 471160 33280 504440 

DPMA-run 409600 15360 424960 

Table 3: Execution times using different approaches 

The execution times including the reconfiguration 
times are summarized in Table 3. The approaches us- 
ing dynamic precision achieve significantly lower ex- 
ecution times compared to the Raw and Static ap- 
proaches. We noticed that our DPMA algorithm ex- 
ecuted all the iterations of the loop in the minimum 
time for the theoretical and run-time precision vari- 
ation curves. The DPMA-run achieves significant 
speed-up by exploiting the fact that 28-bit precision 
is never required. 

8    Conclusions 

This paper has developed a framework for dynamic 
precision management for loop computations.    We 

have shown how the variable precision in computa- 
tions can be captured by using the precision variation 
curve. The paper described our approach to com- 
puting the precision variation curve using theoreti- 
cal and run-time analysis. The information obtained 
from these analyses is used to develop optimal sched- 
ules for dynamic precision management. The DPMA 
algorithm that we have developed can compute the 
required optimal schedule for a given operation in a 
loop using the precision variation curve and the set of 
variable precision configurations. Our Hybrid System 
Model(HySAM) of reconfigurable architectures facili- 
tates the development of these algorithms using a high 
level abstract model. The paper illustrated the per- 
formance benefits achievable for an example loop com- 
putation using our approach. We expect that the pro- 
posed approach can lead to significant improvement in 
performance and automatic mapping of variable pre- 
cision computations on reconfigurable architectures. 

The dynamic precision management framework 
gives rise to a wealth of issues which can potentially 
provide enormous benefits to mapping computations 
onto configurable hardware. Bit-serial and digit-serial 
computations are one class of computations which can 
exploit dynamic precision without large overheads. 
The control component of the design needs to exe- 
cute the configurations for a variable number of steps 
based on the required precision. Run-time precision 
management where the control modifies the precision 
of the computations are being explored. Configurable 
logic can be utilized to execute multiple iterations of 
loops in parallel in the absence of dependencies. Re- 
duction of the logic resources due to dynamic precision 
management can be exploited to execute more num- 
ber of iterations in parallel. Multi-context devices and 
configuration caches can be utilized to reduce the re- 
configuration overheads by storing variable precision 
configurations. 

The work reported here is part of the USC MAARC 
project(http://maarc.usc.edu). This project is devel- 
oping algorithmic techniques for realizing scalable and 
portable applications using configurable computing 
devices and architectures. We are developing com- 
putational models and algorithmic techniques based 
on these models to exploit dynamic reconfiguration. 
Some recent related results can be found in [1, 12]. 
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Abstract 

Reconfigurable circuits and systems have 
evolved from application specific accelerators 
to a general purpose computing paradigm. Re- 
configuring the logic is still an expensive op- 
eration and precludes frequent configuration 
changes. To reduce the overheads involved 
in reconfiguration, devices with configuration 
caches and multiple contexts are being de- 
signed. Reconfigurable computing solutions 
are typically designed by composing lower level 
modules or library components. Each opera- 
tion in an application can be implemented by 
using any one among several of these modules 
or hardware objects. This gives rise to the 
problem of choosing an optimal set of modules 
for utilizing the cache or the multiple contexts. 
This paper develops a formal methodology for 
selection of these modules to minimize the to- 
tal execution time. The total execution time 
includes the reconfiguration time and the com- 
putation time in various configurations. We 
focus on loop computations since they are the 
most compute intensive parts of applications. 
We utilize a parameterized abstract model of 
reconfigurable architectures which is general 

"This work was supported by the DARPA Adaptive 
Computing Systems Program under contract DABT63- 
96-C-0049 monitored by Fort Hauchuca. 

enough to capture a wide range of configurable 
systems. Our abstract model is used to de- 
fine the problem of mapping loop statements 
onto reconfigurable architectures. We show a 
polynomial time algorithm to compute the op- 
timal sequence of configurations(modules) for 
one important variant of the problem. 

1    Introduction 

Configurable systems are evolving from sys- 
tems designed to accelerate a specific applica- 
tion to systems which can achieve high perfor- 
mance for general purpose computing. Vari- 
ous reconfigurable architectures are being ex- 
plored by several research groups to develop 
a general purpose configurable system. Re- 
configurable architectures vary from systems 
which have FPGAs and glue logic attached to 
a host computer to systems which include con- 
figurable logic on the same die as a micropro- 
cessor. 

The performance achievable on reconfig- 
urable architectures is limited by the costs in- 
volved in reconfiguring the logic. Currently, 
this overhead is very high and discourages the 
reconfiguration of the logic during the execu- 
tion of a single application. To address this 
problem architectures which support configu- 
ration caches and multiple contexts on the de- 
vices have been proposed [7, 5, 6, 8, 9]. In 
devices with configuration caches, the cost of 



loading a configuration from the cache is much 
lower than loading a configuration from off- 
chip memory. In multi-context devices, the 
overhead for switching between contexts is very 
low. In some devices this can be done in a few 
clock cycles. 

Development of reconfigurable computing 
solutions is typically based on hierarchical de- 
signs. Modules or library components are uti- 
lized to compose and construct larger designs. 
Utilizing such hardware objects makes the de- 
sign development easier and promotes reuse of 
optimized modules. For executing a given op- 
eration, various modules can be utilized. These 
modules can differ in their performance char- 
acteristics such as area, execution time, power 
consumption, reconfiguration time etc. 

In this paper we address the problem of 
automatic selection of optimal modules or 
hardware objects to be utilized in cached- 
configuration or multi-context devices. We fo- 
cus our efforts on loop statements since they 
provide the maximum opportunity for perfor- 
mance improvement. Loop statements have 
regular and repetitive computations which are 
well-suited to reconfigurable architectures. We 
had previously developed an abstract model of 
reconfigurable architectures, the Hybrid Sys- 
tem Architecture Model [1, 2, 3, 4]. This pa- 
rameterized abstract model is general enough 
to capture a wide range of configurable sys- 
tems. We define the problem of optimal mod- 
ule selection using the HySAM model. We con- 
sider one variation of the problem when the 
multiple configurations in the cache or the con- 
texts can be pre-loaded but cannot be modified 
during execution. We present an efficient algo- 
rithm to compute the solution for this variant. 

Section 2 described multi-context devices 
and their operation. Section 3 describes our 
Hybrid System Architecture Model (HySAM). 
The optimal module selection problem for a 
loop is defined and the optimal solution is pre- 
sented in Section 4. We present conclusions 
and future research in Section 5. 

2    Reconfigurable 
Architectures 

Typical reconfigurable devices have high recon- 
figuration times in the order of milli-seconds. 
Reconfiguration in such devices involves down- 
loading the bit stream for the complete de- 
vice configuration. Some reconfigurable de- 
vices permit partial and dynamic reconfigura- 
tion [10]. These devices permit reconfiguration 
of a part of the device while the configuration 
of the remaining device is unchanged. Many of 
the reconfigurable devices are based on SRAM 
controlled configuration of the logic and the in- 
terconnection network. Configuration of a de- 
vice involves configuring the SRAM cells in the 
device. 

External 
Configuration Data 

1 

2 'r 

Logic 3 
| control 

Active 
Context 

Nc 
'Configuration Cache/ 
Multiple Contexts 

Figure 1: Device logic control model 

In devices with configuration caches or mul- 
tiple contexts, the SRAM cells controlling the 
functionality of the logic cell can be configured 
using any one of the multiple configurations. 
Figure 1 illustrates the abstract view of such 
devices. Configuration of the multi-context 
device is performed by loading the configura- 
tions of the various contexts onto the device. 
Loading all the contexts onto the device takes 
reconfiguration time similar to the reconfigu- 
ration times of typical reconfigurable devices. 
But, once the configurations are loaded onto 
the chip, switching between the configurations 
is very inexpensive. Switching times for such 
devices are expected to be in the range of 5- 
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100 ns. This is several orders of magnitude 
faster than configuring the active context by 
using external data. 

3    Hybrid    System    Architec- 
ture Model(HySAM) 

A high level model of reconfigurable hardware 
is needed to abstract the low level details. 
Existing models supplied by the CAD tools 
have either multiple abstraction layers or are 
very device specific. We present a parameter- 
ized model of a configurable computing system, 
which consists of configurable logic attached 
to a traditional microprocessor. Our model 
cleanly partitions the capabilities of the hard- 
ware from the implementations and presents a 
very clean interface to the user. We describe 
the model below briefly since it is not the main 
focus of the paper. Details of the HySAM 
model and some prior algorithms for mapping 
based on the model are available in [1, 2, 3, 4]. 

The Hybrid System Architecture Model is a 
general model consisting of a traditional micro- 
processor with additional Configurable Logic 
Unit(CLU). Figure 2 shows the architecture of 
the HySAM model and Figure 3 shows an ex- 
ample of an actual architecture. The architec- 
ture consists of a traditional microprocessor, 
standard memory, configurable logic, configu- 
ration memory and data buffers communicat- 
ing through an interconnection network. 

We outline some of the parameters of the 
Hybrid System Architecture Model(HySAM) 
below. 

F : Set of functions Fi ...Fn which can be 
performed on configurable logic, (capabil- 
ities) 

C : Set of possible configurations C\.. .Cm 

of the Configurable Logic Unit, (imple- 
mentations) 

Uj : Cost of executing function Fi in config- 
uration Cj. 

Rij : Reconfiguration cost in changing config- 
uration from Ci to Cj. 

Nc : The number of configuration which can 
be stored in the cache or the multiple con- 
texts in the CLU. 

kc : The cost of switching to one of the con- 
text from among those resident on the 
CLU. 

The hardware objects or modules are rep- 
resented by the Functions and the Configu- 
rations. The functions F and configurations 
C have a many-to-many relationship. Each 
configuration C,-, can potentially contain more 
than one function Fj. For example, a config- 
uration can contain both addition and logical 
OR, given enough logic resources. The execu- 
tion cost of a function Fi in configuration Cj is 
specified as one of t,-j. In the HySAM model, 



only function can be active in a configuration 
at any given time. Each function F; can be ex- 
ecuted by using any one configuration from a 
subset of the configurations. 

The different configurations might be gener- 
ated by different tools, libraries or algorithms. 
These configurations might have different area, 
time, reconfiguration, precision, power, etc. 
characteristics. For example, it is possible to 
design multipliers of various area/time charac- 
teristics by choosing various degrees of pipelin- 
ing and carry look ahead techniques. The mul- 
tiplier can have different values for the area, 
pipeline stages, cycle time and number of cy- 
cles for finishing the computation. Similarly, 
floating point operation configurations can be 
designed with various degrees of precision. 

The execution model that we consider con- 
tains A7

C configurations resident on the chip in 
the cache or the multiple contexts. There is 
one active context which can be based on one 
of the Nc configurations or can be configured 
from external memory. Switching to a configu- 
ration Cj from a configuration d takes kc time 
if Cj is one of the Nc configurations or Rij if 
the configuration has to be fetched from out- 
side the chip. We assume that only the active 
context can be configured externally during the 
execution of the application. Before the appli- 
cation has started execution, the multiple con- 
figurations can be loaded onto the device. 

The reconfiguration costs R define the costs 
involved in changing the configuration of the 
CLU between two configurations. This cost 
can be statically evaluated based on the con- 
figuration information for different configura- 
tions. The cost can also be computed dynam- 
ically when the configurations are constructed 
dynamically. The cost defines the amount of 
logic reconfigured and the time spent in recon- 
figuring the logic between any two configura- 
tions belonging to C. This cost incorporates 
the factors when partial and dynamic reconfig- 
uration is exploited. 

4    Mapping        Configurations 
onto Contexts 

Computations which operate on a large set of 
data using the same set of operations are most 
likely to benefit from configurable computing. 
Hence, loop structures will be the most likely 
candidates for performance improvement using 
configurable logic. Configurations which exe- 
cute each task can be generated for the oper- 
ations in a loop. Since each operation is exe- 
cuted on a dedicated hardware configuration, 
the execution time for the task is expected to 
lower than that in software. We solve the re- 
stricted version of the problem which imposes 
a linear order on the list of tasks to be exe- 
cuted in a loop. Any given list of tasks with 
directed acyclic dependencies can be converted 
to a linear list by using topological sorting. 

Each of the operations in the loop statement 
might be a simple operation such as an ad- 
dition of two integers or can be a more com- 
plex operation such as a square root of a float- 
ing point number. The problems and solu- 
tions that we present are independent of the 
complexity of the operation. As we described 
in Section 3, a single operation can be im- 
plemented using various optimizations to pro- 
vide several implementations. These different 
configurations can have different performance 
characteristics. 

The mapping problem is to select the con- 
figuration to be utilized for each function and 
the configurations which are stored in the con- 
texts. To select the configuration for exe- 
cuting a given function we can employ the 
greedy strategy. The greedy algorithm chooses 
the best possible configuration for executing a 
given function, i.e., the configuration with the 
lowest execution cost. But this configuration 
might have a large reconfiguration cost which 
increases the total execution time and gives a 
sub-optimal solution. For selecting the config- 
urations to be pre-loaded the greedy strategy 
is still sub-optimal. Pre-loading the configura- 
tion with the highest reconfiguration cost gives 
a sub-optimal solution.   Selecting a different 



configuration to be pre-loaded and using a con- 
figuration with lower execution cost can give a 
better solution. We assume the following re- 
garding the model as explained in Section 3: 

1. The Ar
c configurations are loaded on to the 

device at the start of the computation. 

2. The active context can be configured from 
any of the Nc configurations with a cost kc. 

3. The pre-loaded configurations can not be 
modified during the execution of the com- 
plete application. Only the active context 
can be reconfigured externally. 

Hardware Object Selection Problem 

Input : A sequence of tasks of a loop, T\ 
through Tp to be executed in linear order( T\ 
T2 ■ ■ ■ Tp), where Tt 6 F, for N number of iter- 
ations, and the number of configurations which 
can be cached or stored in contexts Nc. 

Output : An optimal schedule of configu- 
rations 5 (=Ci C2 • ■ ■ Cg), and the set X of 
configurations to be stored in the Nc contexts. 
An optimal schedule has the minimum total 
execution cost E, which includes the reconfig- 
uration cost.   The cost of a schedule is given 
by 

E=Y,tc3+RU3) 

where tc} is time for executing one iteration 
of the loop in configuration Cj and R'j-ij 
is the reconfiguration cost between configura- 
tions Cj-i and Cj. R'^ is defined as 

R'{J    =    kdfCjEX 

=    Rij otherwise 

o 
Solution: We compute the optimal schedule 
S and the set of contexts X by using a dy- 
namic programming approach. We first discuss 
how the optimal solution can be computed for 
a fully unrolled loop. All the iterations of the 
loop are unrolled to give a linear task sequence. 
We define the following variables: 

• Eij. 1 < j < m: the cost of executing 
tasks T\ to T{ with X", being executed using 
configuration Cj and the configuration Cj 
is added to the contexts in A" if not already 
in A". 

• Eij, m + 1 < j < 2*m: the cost of execut- 
ing tasks 7\ to Ti with Tt- being executed 
using configuration Cj and the configura- 
tion Cj is not added to the contexts in A" 
if not already in X. 

• Xij, 1 < j < 2 * m: the set of contexts 
which are added to A for executing tasks 
T\ to Ti with T being executed using con- 
figuration Cj. 

• \Xij\: the number of contexts in set Xij. 

The Eij and the Xij values are computed 
using dynamic programming. The recursive 
equations for computing them are given below: 

mink = l<k<2*m: min[Eik + $kj] 

5kj denotes the reconfiguration cost and can 
be evaluated based on the various possible sce- 
narios: 

• Configuration Cj is already in cache. The 
reconfiguration cost is the cost of perform- 
ing a context switch, kc. 

• Configuration Cj has not been cached. 
The reconfiguration cost is based on the 
set \Xik\- If there is space in this set of 
configurations to be pre-loaded, then the 
configuration Cj is added to the set and 
reconfiguration cost is kc. If the cache is 
already full then the full reconfiguration 
cost Rij is incurred. 

The value of 8kj is computed at each step as 

if {Cj e Xik) 

else if {\Xkj\ < Nc  and   1 < j < m) 

else 

Ofcj      =      tiij 



Given the value of mink, the iw+ij and the 
Xi+ij values are computed as follows: 

■fcj'+lj = *i+lj T" ■£-! mink T" °mink j 

-^J+1J      
=     -'M mink U L-j 

*7 lA'.-minfcl < iVc  and  1 < j < m) 

=   A",- mint     otherwise 

The minimum execution cost £ and the cor- 
responding set of contexts A" for executing 
tasks T\ to Ts for any z are given by: 

jmin = 1 < j < 2 * m : mrn^-] 

■£> — i^z jmin 

Y    v    •    • *"*  — *'*-z jmin 

The required optimal schedule and the set 
of contexts can be computed by fully unrolling 
the loop and computing E and X for z = p*N 
where N is the number of the iterations and p 
is the number of tasks in the loop. Q 

5    Conclusions 

Mapping of applications in an architecture in- 
dependent fashion can provide a framework for 
automatic compilation of applications. Loop 
structures with regular repetitive computa- 
tions can be speeded-up by using configurable 
hardware. In this paper, we have developed 
techniques to map loops from application pro- 
grams onto configurable hardware. The low re- 
configuration costs of multi-context devices are 
exploited to reduce the reconfiguration over- 
heads in mapping. We described an efficient 
algorithm to select modules to be mapped onto 
the available contexts. 

The problem that we solve assumes that the 
pre-loaded configurations can not be modified 
during the application execution. A more gen- 
eral version of the problem to be addressed is 
optimizing the execution time when the config- 
urations can be replaced and the replacement 
can overlap with execution in a configuration. 
The work reported here is part of the USC 
MA ARC project. This project is developing al- 
gorithmic techniques for realizing scalable and 

portable applications using configurable com- 
puting devices and architectures. Some related 
results can be found at http://maarc.usc.edu. 
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Abstract. Current simulation tools for reconfigurable systems are based 
on low level simulation of application designs developed in a High-level 
Description Language(HDL) on HDL models of architectures. This ne- 
cessitates expertise on behalf of the user to generate the low level design 
before performance analysis can be accomplished. Most of the current 
simulation tools also are based on static designs and do not support 
analysis of dynamic reconfiguration. 
We propose a novel interpretive simulation and visualization environment 
which alleviates these problems. The Dynamically Reconfigurable sys- 
tems Interpretive simulation and Visualization Environment(DRIVE) 
framework can be utilized for performance evaluation and architecture 
and design space exploration. Interpretive simulation measures the per- 
formance of an application by executing an abstract application model 
on an abstract parameterized system architecture model. The simula- 
tion and visualization framework is being developed in Java language 
and supports modularity and extensibility. A prototype version of the 
DRIVE framework has been implemented and the complete framework 
will be available to the community. 

1    Introduction 

Reconfigurable systems are evolving from rapid prototyping and emulation plat- 
forms to a general purpose computing platforms. The systems being designed 
using reconfigurable hardware range from FPGA boards attached to a micro- 
processor to systems-on-a-chip having programmable logic on the same die as 
the microprocessor. Reconfigurable systems have been utilized to demonstrate 
large speed-ups for various classes of applications. Architectures are being de- 
signed which support partial and dynamic reconfiguration. The reconfiguration 
overhead to change the functionality of the hardware is also being diminished by 
the utilization of configuration caches and multiple contexts on the same device. 

This work was supported by the DARPA Adaptive Computing Systems Program 
under contract DABT63-96-C-0049 monitored by Fort Hauchuca. 



Compilation of user level programs onto reconfigurable hardware is also being 
explored. 

The general purpose computing area is the most promising to achieve sig- 
nificant performance improvement for a wide spectrum of applications using 
reconfigurable hardware. But, research in this area is hindered by the absence 
of appropriate techniques and tools. Current design tools are based on ASIC 
CAD software and have multiple layers of design abstractions which hinder 
high level optimizations based on reconfigurable system characteristics. Existing 
frameworks are either based on simulation of HDL based designs [1, 11, 13] or 
they are tightly coupled to specific architectures [5, 9, 14](See Section 1.1). It is 
also difficult to incorporate dynamic reconfiguration into the current CAD tools 
framework. Simulation tools provide a means to explore the architecture and 
the design space in real time at a very low resource and time cost. The absence 
of mature design tools also impacts the simulation environments that exist for 
studying reconfigurable systems and the benefits that they offer. System level 
tools which analyze and simulate the interactions between various components 
of the system such as memory and configurable logic are limited and are mostly 
tightly coupled to specific system architectures. 

In this paper we present a novel interpretive simulation and visualization en- 
vironment based on modeling and module level mapping approach. The Dynamically 
Reconfigurable systems Interpretive simulation and Visualization Environment(DRIVE) 
can be utilized as a vehicle to study the system and application design space and 
performance analysis. Reconfigurable hardware is characterized by using a high 
level parameterized model. Applications are analyzed to develop an abstract ap- 
plication task model. Interpretive simulation measures the performance of the 
abstract application tasks on the parameterized abstract system model. This 
is in contrast to simulating the exact behavior of the hardware by using HDL 
models of the hardware devices. 

The DRIVE framework can be used to perform interactive analysis of the ar- 
chitecture and design parameter space. Performance characteristics such as total 
execution time, data access bandwidth characteristics and resource utilization 
can be studied using the DRIVE framework. The simulation effort and time 
are reduced and systems and designs can be explored without time consuming 
low level implementations. Our approach reduces the semantic gap between the 
application and the hardware and facilitates the performance analysis of recon- 
figurable hardware. Our approach also captures the simulation and visualization 
of dynamically reconfigurable architectures. We have developed the Hybrid Sys- 
tem Architecture Model(HySAM) of reconfigurable architectures. This model is 
currently utilized by the framework to map applications to a system model. 

An overview of our framework is given in Section 2. Various aspects of the 
simulation and visualization framework including our Hybrid System Architec- 
ture Model(HySAM) are described in detail in Section 3. Conclusions and future 
work are discussed in Section 4. 



1.1    Related Work 

Several simulation tools have been developed for reprogrammable FPGAs. Most 
tools are device based simulators and are not system level simulators. The most 
significant effort in this area has been the Dynamic Circuit Switching(DCS) 
based simulation tools by Lysaght et.al. [13]. Luk et.al. describe a visualization 
tool for reconfigurable libraries [11]. They developed tools to simulate behavior 
and illustrate design structure. CHASTE [5] was a toolkit designed to experiment 
with the XC6200 at a low level. There are other software environments such as 
CoDe-X [9], JHDL [1], HOTWorks [7], Riley-2 [14], etc. 

These tools study the dynamically reconfigurable behavior of FPGAs and are 
integrated into the CAD framework. Though the simulation tools can analyze 
the dynamic circuit behavior of FPGAs, the tools are still low level. The sim- 
ulation is based on CAD tools and requires the input design of the application 
to be specified in VHDL. The parameters for the design are obtained only after 
processing by the device specific tools. Most of the software frameworks do not 
support system level analysis and are utilized for for low level hardware design 
and evaluation. 

2    DRIVE Overview 

Architectures Library Modules Applications 

Interpretive Simulation J 
Performance Analysis 

Design Exploration 

Fig. 1. DRIVE framework 



Figure 1 shows an overview of our framework. The system architecture can be 
characterized to capture the parameter space which affects the performance. The 
implementations of various optimized modules can be encapsulated by charac- 
terizing the performance of the module with respect to the architecture. This 
characterization is partitioned into the capabilities of the system and the actual 
implementations of these capabilities. The application is not mapped onto a low 
level design but is analyzed to develop an application task model. The application 
model can exploit the knowledge available in the form of the system capabilities 
provided by the module characterization. Algorithmic techniques are utilized to 
map the application task model to the system models, to perform interpretive 
simulation and obtain performance results for a given set of parameter values. 

Interpretive simulation is performed on the system model which permits a 
higher level abstract simulation. The application does not need to be actually ex- 
ecuted by using device level simulators like HDL models of the architectures. The 
performance measures can be obtained in terms of the application and model pa- 
rameters and system characteristics. An interpretive simulation framework will 
permit design exploration in terms of the architectural choices, application algo- 
rithm options, various mapping techniques and possible problem decomposition 
onto the system components. Development of all the full blown designs which 
exercise these options is a non-realizable engineering task. Simulation, estima- 
tion and visualization tools can be designed to automate this exploration and 
obtain tangible results in reasonable time. 

The abstractions and the techniques that are developed are enclosed in the 
dashed box in Figure 1. Verification of the models, mapping techniques and 
simulation framework can be performed by mapping some designs onto actual 
architectures. This verification process can be utilized to expand on the abstrac- 
tion knowledge and refine the various models and techniques that are developed. 
The verification and refinement process completes the feedback loop of the de- 
sign cycle to result in final accurate models and efficient techniques for optimal 
designs. 

3    Simulation Framework 

The simulation framework consists of abstractions and algorithmic techniques 
as discussed in Section 2(Fig. 1). A high level model of reconfigurable hardware 
is needed to abstract the low level details. Existing models supplied by the CAD 
tools have either multiple abstraction layers or are very device specific. We have 
developed a parameterized model of configurable computing system, which con- 
sists of configurable logic attached to a traditional microprocessor. Our model 
cleanly partitions the capabilities of the hardware from the implementations and 
presents a very clean interface to the user. The algorithmic techniques for map- 
ping are not the focus of this paper. Some algorithms for mapping based on the 
HySAM model are described in our prior work [3, 4]. 
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3.1    Hybrid System Architecture Model(HySAM) 

The Hybrid System Architecture Model is a general model consisting of a tradi- 
tional microprocessor with additional Configurable Logic Unit(CLU). Figure 2 
shows the architecture of the HySAM model and an example of an actual ar- 
chitecture. The architecture consists of a traditional microprocessor, standard 
memory, configurable logic, configuration memory and data buffers communi- 
cating through an interconnection network. 

We outline some of the parameters of the Hybrid System Architecture Model (HySAM) 
below. 

F : Set of functions F\ .. .Fn which can be performed on configurable logic. 
(capabilities) 

C : Set of possible configurations C\... Cm of the Configurable Logic Unit. 
(implementations) 

Aij  : Set of attributes for implementation of function F,- using configuration Cj. 
R;j : Reconfiguration cost in changing configuration from d to Cj. 

G : Set of generators which abstract the composition of configurations to gen- 
erate more configurations. 

B : Bandwidth of the interconnection network (bytes/cycle). 
Nc : The number of configuration contexts which can be stored in the configu- 

ration cache. 
kc, Kc : The cost of accessing configuration data from the cache and external mem- 

ory respectively (cycles/byte). 
kd, Kd '■ The cost of accessing data from the cache and external memory respectively 

(cycles/byte). 

The functions F and configurations C have a many-to-many relationship. 
Each configuration C,, can potentially contain more than one function Fj. In 
the HySAM model, only function can be active in a configuration at any given 
time. Each function F,- can be executed by using any one configuration from a 
subset of the configurations. The different configurations might be generated by 
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different tools, libraries or algorithms. These configurations might have different 
area, time, reconfiguration cost, precision, power, etc. characteristics. 

The attributes A define the relationship between the functions and the con- 
figurations. The attributes define values such as the execution time and the data 
accessed during execution of a function in a configuration etc. For example, the 
different execution times and the different data input patterns when a multi- 
plier is implemented as a bit parallel versus a bit serial multiplier are defined by 
the attributes. The reconfiguration costs R define the costs involved in chang- 
ing the configuration of the CLU between two configurations. This cost can be 
statically evaluated based on the configuration information for different config- 
urations. The cost can also be computed dynamically when the configurations 
are constructed dynamically. 

3.2     DRIVE Framework Implementation 

An overview of the major components in the DRIVE framework and their 
interactions is given in Figure 3. The framework utilizes high level models of re- 
configurable hardware. The current prototype uses the HySAM model described 
in Section 3.1. 

The main input requirements to the DRIVE framework are the model pa- 
rameters and the application tasks. The model parameters supply information 
about the Functions, Configurations, Attributes and the Reconfiguration costs. 



The user can visualize and update any of the instantiated parameters to ex- 
plore the design space. For a given model parameters, performance results can 
be obtained for any set of application tasks with various algorithmic mapping 
techniques. 

The high level model partitions the description of the hardware into two 
components: the Functions(capabilities) of the hardware and the Configura- 
t'ions(implementations). For example, ability of the hardware to perform multi- 
plication is a capability. The implementations are the different multiplier designs 
available with varying characteristics such as area, time, precision, structure, etc. 
Components from a library or modules form the implementations in the model 
and can be determined for different architectures. Vendors and researchers have 
developed parameterized libraries and modules optimized for a specific archi- 
tectures. The proposed framework can exploit the various efforts in design of 
efficient and portable modules [6, 12, 15]. The framework can incorporate such 
knowledge as the parameters for the HySAM model. 

The user only needs to have a knowledge of the capabilities. The application 
task model consists of specification of the application in terms of the Func- 
tions(capabilities). The input to the framework consists of a directed acyclic 
graph of the application tasks specified with the Functions as the nodes of the 
graph. The edges denote the dependencies between the tasks. This technique 
reduces the effort and expertise needed on the part of the user. The application 
need not be implemented as an HDL design by the user to study the perfor- 
mance on various reconfigurable architectures. Automatic compilation efforts [2] 
can be leveraged to generate the Functions from high level language application 
programs. 

Algorithmic mapping techniques are then utilized to map the application 
specification to actual implementations. These techniques map the capabilities 
to the implementations and generate a sequence of configuration, execution, 
and reconfiguration steps. This is the adaptation schedule which specifies how 
the hardware is adapted during the execution of the application. The schedule 
contains a sequence of configurations(d .. .Cq) where each configuration C; S 
C. This adaptation schedule can be computed statically for some applications by 
using algorithmic techniques. Also, the simulation framework can interact with 
the model and the mapping algorithms to determine the adaptation schedule at 
run-time. 

The interpretive simulation framework is based on module level parameteri- 
zation of the hardware. The user can analyze the performance of the architecture 
for a given application by supplying the parameters of the model and the appli- 
cation task. Typically the architectural parameters for the model are supplied 
by the architecture designer and the library designer. But, the user can modify 
the model parameters and explore the architecture design space. This provides 
the ability to study design alternatives without the need for actual hardware. 
The simulation and the performance analysis are presented to the user through 
a Graphical User Interface. The framework supports incorporation of additional 
information in the configurations(C) which can be utilized for actual execution 



or simulation. It can contain configuration bitstreams or class descriptions which 
can be utilized to perform actual configuration of hardware or simulation using 
low level models. Using this information, it is possible to link the abstract defi- 
nitions to actual implementations to verify and refine the abstract models. 

The parameters and attributes of the model can also be evaluated and 
adapted at run-time to compute the required information for scheduling and 
visualization. For example, reconfiguration costs can be determined by comput- 
ing the difference in the configuration information and configurations can even 
be generated dynamically by future integration of tools like JBits [10]. It is as- 
sumed currently that the attributes for configurations are available a priori. It is 
easy to integrate simulation tools which evaluate the attributes such as execu- 
tion time by performing simulations as in various module generators [1, 6, 15]. 
These simulations are based on module generators which do not require mapping 
using time consuming CAD tools. Once the attribute information for low level 
modules are obtained by initial simulations and implementations, the attributes 
for higher level modules can be simulated or computed without the intervention 
of CAD tools. 

The DRIVE framework has been designed using object-oriented methodol- 
ogy to support modification and addition to the existing components. The frame- 
work facilitates addition of new architectural models, algorithmic mapping tech- 
niques, performance analysis tools, etc. in a seamless manner. The framework 
can also be interfaced to existing tools such as parameterized libraries(Xilinx 
XBLOX, Luk et. al. [12]), module generators(PAM-Blox [15], Berkeley Object 
Oriented Modules [6], JHDL [1]), configuration generators(JBits [10]), module 
interfaces(FLexible API for Module-based Environments [8]), etc. The compo- 
nents of the framework will be made available to the community to facilitate 
application mapping and modular extensions. 

3.3    Visualization 

The visualizer for the framework has been developed using the Java language 
AWT toolkit. A previous version of the visualizer was developed using Tcl/Tk. 
The C programming language was utilized for implementing the simulation en- 
gine. The current prototype has been developed in Java to utilize the object 
oriented framework and make the framework modular and easily extensible. Im- 
plementing the visualizer and the interpretive simulation in the same language 
provides for a clearer interface between the components. Java is becoming the 
language of choice for several research and implementation efforts in hardware 
design and development [1, 6, 10]. Incorporating the results and abstractions 
from other research efforts is simplified using the current version. 

The visualizer acts as a graphical user interface to support the full function- 
ality of the framework. It is implemented as a separate Java class communicat- 
ing with the remaining classes. Any component of the simulation or visualizer 
framework can be completely replaced with a different component supporting 
the same interface. The visualizer is oblivious of the algorithmic techniques and 
implementation details. It accesses information from the different components 
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Fig. 4. Sample DRIVE visualization 

in the simulation framework on an event by event basis and displays the state 
of the various architecture components and the performance characteristics. A 
sample view of the visualizer is shown in Figure 4. 

4    Conclusions 

Software tools are an important component of reconfigurable hardware devel- 
opment platforms. Simulation tools which permit performance analysis and de- 
sign space exploration are needed. The utility of current tools for reconfigurable 
hardware design is limited by the required user expertise in multiple domains. 
We have proposed a novel interpretive simulation and visualization environment 
which supports system level analysis. The DRIVE framework supports a param- 
eterized system architecture model. Algorithmic mapping techniques have been 
incorporated into the framework and can be extended easily. The framework 
can be utilized for performance analysis, design space exploration and visual- 
ization. It is implemented in the Java language and supports flexible extensions 
and modifications. A prototype version has been implemented and is currently 
available. The USC Models, Algorithms and Architectures project is developing 
algorithmic techniques for realizing scalable and portable applications using con- 



figurable computing devices and architectures. Details on DRIVE and related 
research results can be found at http://maarc.usc.edu. 
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Abstract. This paper presents a novel approach that utilizes FPG A self-reconfiguration 
for efficient computation in the context of Genetic Programming (GP). GP in- 
volves evolving programs represented as trees and evaluating their fitness, the 
latter operation consuming most of the time. 
We present a fast, compact representation of the tree structures in FPGA logic 
which can be evolved as well as executed without external intervention. Execution 
of all tree nodes occurs in parallel and is pipelined. Furthermore, the compact 
layout enables multiple trees to execute concurrently, dramatically speeding up 
the fitness evaluation phase. An elegant technique for implementing the evolution 
phase, made possible by self-reconfiguration, is also presented. 
We use two GP problems as benchmarks to compare the performance of logic 
mapped onto a Xilinx XC6264 FPGA against a software implementation running 
on a 200 MHz Pentium Pro PC with 64 MB RAM. Our results show a speedup of 
19 for an arithmetic intensive problem and a speedup of three orders of magnitude 
for a logic operation intensive problem. 

1   Introduction to Self-Reconfiguration 

1.1    Problem Instance Dependence and Hardware Compiling 

Building logic depending on a single problem instance is the key advantage of reconfigurable 
computing versus ASICs. That essentially means that a good application for reconfigurable de- 
vices should read the input of the problem (the instance), compute instance dependent logic, 
i.e. logic optimized for that particular instance, and load it into a reconfigurable device to solve 
the problem. Applications which produce instance independent logic to be loaded onto a recon- 
figurable device are simply not exploiting the power of reconfiguration. In that case the logic 
mapped is static, depends only on the algorithm used, and is not conceptually different from 
ASIC approach. 

* This work was supported by the DARPA Adaptive Computing Systems Program under con- 
tract DABT63-96-C-0049 monitored by Fort Hauchuca. Alessandro Mei is with the Depart- 
ment of Mathematics of the University of Trento, Italy. 
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(a) Mapping and execution on a conventional 
reconfigurable device. 
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self- 

A large class of applications developed for reconfigurable devices can thus be modeled in 
the following way (see Figure 1(a)). A process M reads the input problem instance. Depending 
on the instance a logic E, ready to be loaded, is computed such that it is optimized to solve that 
single problem instance. This process is usually executed by the host computer. Let TM denote 
the time to perform this. 

After reconfiguring the device, E is ex- 
ecuted. Let TME denote the time to recon- 
figure. The time TE required for the execu- 
tion includes the time needed for reading 
the inputs from the memory and produc- 
ing the output and/or intermediate results 
sent back to the mapping module. There- 
fore, the time required by the execution of 
a single iteration of the computation de- 
scribed above is Ti = TM + TME + TE- 

This process can be iterated. The interme- 
diate results returned by E can be used by 
M to compute and map new logic toward 
the final solution of the problem instance. 

A large number of applications fit this 
model. In some of them, a small amount of 
parallelism can be obtained by running M 
and E in parallel. However, the best speed- 
up that can be obtained this way is a factor 
of 2. Thus, we can suppose that only one of 
the two modules runs at a given time, with- 
out loss of generality. Of course, this factor 
cannot be ignored in performance analy- 
sis. 

Self-Reconfiguration is a novel approach to reconfigurable computing presented in [12]. It 
has been shown to be able to dramatically reduce TM and TME with respect to classical CAD 
tool approach. Since M has to be speeded up, the basic idea is to let fast reconfigurable devices 
to be able to execute it (see Figure 1(b)). In case a single FPGA is being used, the FPGA should 
be able to read from a memory the problem instance, configure itself, or a part of it, and execute 
the logic built by it to solve the problem instance. Evidently, in this case M is itself a logic circuit, 
and cannot be as complex and general as CAD tools. 

Letting FPGA system execute both M and E on the same chip gives the clear advantage that 
CAD tools are used only once, in spite of classical solutions where they are needed for computing 
a logic for each problem instance. This is possible since the adaptations, needed to customize the 
circuit to the requirements of the actual input, are performed dynamically by the FPGA itself, 
taking advantage of hardware efficiency. 

Another central point is that the bus connecting the FPGA system to the host computer is 
now only used to input the problem instance, since the reconfiguration data are generated locally. 
In this way, the bottle-neck problem is also handled. 

These ideas have been shown to be realistic and effective by presenting a novel implementa- 
tion of a string matching algorithm in [12]. In that paper, however, a simpler version of the above 
model was introduced which consists of a single iteration of the map-execute loop. Nevertheless, 
speedups in mapping time of about 106 over CAD tools were shown. 

Since self-reconfiguration has been proved to be very effective in reducing mapping and host 
to FPGA communication time, we expect that mapping and communication intensive applications 

(b)   Mapping   and   execution 
reconfigurable device. 

Fig. 1. Problem instance dependent mapping. 



can get the maximum advantage from this techniques. A very important example of this kind 
of an application is Genetic Programming. Section 3 briefly introduces GP and shows how GP 
applications can fit our model, proving this way they can be dramatically speeded up by using 
reconfigurable computing enhanced with Self-Reconfiguration. 

1.2   Previous Work Related to Self-Reconfiguration 

The main feature needed by an FPGA device to fulfill the requirements needed by the technique 
shown in the previous section is self-reconfigurability. This concept has been mentioned few 
times in the literature on reconfigurable architectures in the last few years [5][4]. 

In [5], a small amount of static logic is added to a reconfigurable device based on an FPGA in 
order to build a self-reconfiguring processor. Being an architecture oriented work, no application 
of this concept is shown. The recent Xilinx XC6200 is also a self-reconfiguring device, and this 
ability has been used in [4] to define an abstract model of virtual circuitry, the Flexible URISC. 
This model still has a self-configuring capability, even though it is not used by the simple example 
presented in [4]. The concept of self-reconfiguration has also been used in the reconfigurable 
mesh [6]—a theoretical model of computation—to develop efficient algorithms. However, there 
has been no demonstration (except in [12]) of apractical application utilizing self-reconfiguration 
of FPGAs to improve performance. This paper shows how self-reconfiguration can be used to 
obtain significant speedups for Genetic Programming problems. 

Devices like the XC6200 can self-reconfigure and are thus potentially capable of implement- 
ing the ideas presented in this paper. However, moving the process of building the reconfigurable 
logic into the device itself requires a larger amount of configuration memory in the device com- 
pared to traditional approaches. For this reason, multi-context FPGAs are better suited since they 
can store several contexts (see [10], for example, where a self-reconfiguring 256-context FPGA 
is presented). 

2   Multicontext FPGAs 

As described in the Introduction, the time required to reconfigure a traditional FPGA is very 
high. To reduce the reconfiguration time, several such multicontext FPGAs have been recently 
proposed [11][10][13][7][3]. 
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Fig. 2. Self Reconfiguration and context switching in a Multicontext FPGA. 

These devices have on-chip RAM to store a number of configuration contexts, varying from 
8 to 256. At any given time, one context governs the logic functionality and is referred to as the 
active context. Switching contexts takes 5-100 ns. This is several orders of magnitude faster than 
the time required to reconfigure a conventional FPGA («1 ms). For self-reconfiguration to be 
possible, the following two additional features are required of multicontext FPGAs: 



- The active context should be able to initiate a context switch—no external intervention 
should be necessary. 

- The active context should be able to read and write the configuration memory corresponding 
to other contexts. 

The multicontext FPGAs described in [11][10][13] satisfy the above requirements and hence 
are capable of self-reconfiguration. Figure 2 illustrates how a multicontext FPGA with above fea- 
tures can modify its own logic. As shown in Figure 2(a), the active context initially is context 
1 which has logic capable of configuring an AND gate. Figure 2(b) shows this logic using the 
configuration memory interface to write bits corresponding to an AND gate at appropriate loca- 
tions in the configuration memory corresponding to Context 2. Finally the logic on the context 
1 initiates a context switch to Context 2 which now has an AND gate configured at the desired 
location. 

3   Introduction to Genetic Programming 

Genetic Programming [8] is an adaptive and learning system evolving a population of individual 
computer programs. The evolution process generates a new population from the existing one us- 
ing analogs of Darwinian principle and genetic operations such as mutation and sexual recombi- 
nation. In Genetic Programming, each individual is obtained by recursively composing functions 
taken from a set F = {/i,..., /jvfunc}, and terminals from T = {oi,..., ajvtcrm }• Each of the 
individuals has an associated fitness value, usually evaluated over a set of fitness cases. 

A natural way of representing an individual is thus as a 
tree, where a leaf contains a terminal and an internal node 
a function whose arity is exactly equal to the number of its 
children (see Figure 3). The evolution process, starting from 
a randomly generated population of individuals, iteratively 
transforms it into a new population by applying the following 
genetic operations: 

/] 

/: 

reproduction Reproduce an existing individual by copying 
it into the new population. 

crossover Create two new individuals by genetically recom- 
bining two existing ones. This is done by exchanging 
the subtrees rooted at two randomly chosen crossover 
points, one per parental tree. 

mutation Create a new individual from an existing one by 
randomly changing a randomly chosen subtree. 

Fig. 3. Example of individual tree 
structure  in  Genetic  Program- The genetic operations are applied to individuals in the 
ming. population selected with a probability based on their fitness 

value, simulating the driving force of Darwinian natural se- 
lection: survival and reproduction of the fittest. Computing the fitness value of each individual 
is a central computational task of GP applications, usually taking around 95-99% of the overall 
computation time. 

It is thus not surprising that the main effort aimed to speedup a Genetic Programming ap- 
plication is focused on the fitness evaluation. For example, in [2] an FPGA is used to accelerate 
the computation of the fitness value of a population of sorting networks achieving much faster 
execution. 



It is worth noting that the reconfigurable computing application presented in [2] nicely fits 
our model shown in Figure 1(a). Indeed, M is the process responsible for managing and storing 
the population, computing the logic E to fitness test each individual, mapping it onto the device, 
and reading the output value. This operation is repeated for each individual in the population and 
for each generation in the evolutionary process, resulting in a considerable mapping and host to 
FPG A communication overhead. Our performance evaluation (see Section 7) shows that reconfig- 
uration time (TME) is greater than the fitness evaluation time (JE) and thus self-reconfiguration 
is essential. 

Moreover, in [2] only a rather specific application is shown to benefit from FPG A computing, 
and it is not clear how the same approach can be extended to an arbitrary GP application. 

This paper presents important improvements toward in directions. First, it is shown how a 
generic GP application can be mapped onto an FPGA system, taking advantage of the massive 
parallelism of contemporary devices in several ways. Second, how Self Reconfiguration can dra- 
matically speed it up, by handling long mapping and reconfiguration times, and by allowing the 
evolution phase, as well as the fitness evaluation phase, to be mapped onto the FPGA. The FPGA 
executes the complete GP algorithm and does not require any external control. 

We begin by describing the mapping of the program trees onto FPGA logic in the following 
section. Section 5 presents the proposed operation of a GP algorithm on FPGAs. The two GP 
problems used as benchmarks are discussed in Section 6 and the results obtained are presented in 
Section 7. We summarize the contributions of this paper in Section 8. 

(a) 

4   Tree Template 

Before execution begins, a number of tree 
templates are configured onto various con- 
texts of the FPGA. Each template holds 
the tree representing an individual pro- 
gram throughout its lifetime. As evolu- 
tion progresses, the nodes of the tree tem- 
plate are appropriately configured to repre- 
sent the program—the interconnection re- 
main fixed. By configuring the nodes to re- 
flect the actual program, efficient execution 
results through pipelined execution of all 
nodes of the tree in parallel (see Section 
5.2). By employing a template with static 
interconnect, fitness evaluation is speeded 
up and implementation of the mutation, re- 
production and crossover operators is sim- 
plified (see Sections 5.2 and 5.3). The tem- 
plate tree is a complete binary tree of height 
k (having n = 2k — 1 nodes). Number of 
levels of the tree is restricted to the number 
of levels of the template tree. (Restricting 
the number of levels is a common technique 
used in GP implementations to limit tree size.) Below we discuss its mapping onto FPGA logic 
cells and interconnect. 

We map the nodes of the tree along a single row or column of logic cells. The sequence of 
nodes is the same as obtained through an in-order traversal of the binary tree. The width of each 
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(b) 

Fig. 4. Compact tree layout using hierarchical in- 
terconnect structure. 



node is a power of 2 while its height is arbitrary—it depends upon the complexity of the functions 
in the function set. All nodes have the same size. 

Figure 4(a) shows a complete 15 node binary tree. Also shown in Figure 4(b) is the mapping 
of the template tree edges onto wires of the interconnect of the Xilinx XC6200 FPGA archi- 
tecture1. The compact mapping of the tree structure is possible because the interconnect of the 
XC6200 FPGAs. like that of most other FPGA architectures, is hierarchical. Moreover, most 
newer generation FPGA architectures (including the Xilinx XC4000 and Virtex, and the Atmel 
AT40K) have richer and more flexible interconnects than the XC6200. Thus the tree template can 
be easily mapped onto such FPGAs. 

5   Operation 

5.1 Initialization 

A number of tree templates (equal to the required population size) are configured on one or more 
contexts of the FPGA. These templates are then initialized with trees generated using standard GP 
techniques [1]. The size of the nodes in the template is chosen to accommodate the largest area 
occupied by a function implementation. The size of the template itself is chosen to accommodate 
the desired maximum number of levels in the trees. Also configured is logic required for the 
fitness evaluation and evolution phases (explained in the following two sections). 

5.2 Fitness Evaluation Phase 

Figure 5 shows the datapath configured onto each context. The test case generator iterates through 
all the test cases. It uses a part of the context memory to store the test cases. For each case it also 
generates the expected output. A set of values corresponding to the members of the terminal set 
(described in Section 3) forms a test case. The crossbars are required to map these terminal set val- 
ues onto leaf nodes of the tree templates. The crossbars are configured using self-reconfiguration 
in the evolution phase. All nodes of the template trees process the test case in parallel. There is 
concurrent execution of all nodes in each tree level and pipelined execution along each path. The 
test case generation and fitness computation are also pipelined and thus do not incur additional 
overhead. As shown in Figure 5, the fitness computation logic compares the output of the tree for 
a test case with the corresponding expected value. The resulting measure of fitness is accumulated 
in the cumulative fitness register. The two benchmark GP problems described in Section 7 give 
concrete examples of test cases, test case generation logic and fitness computation logic. 

We now compute the time required to perform fitness evaluation using the above approach. 
The total time required to evaluate the fitness of a single generation is: 

TFE — ('node x "tests + ttestgen + 'crossbar + &'node + 'fitcomp + 'fitreg)    ~ W 
I "tcontext I 

where 

k = number of levels in the tree templates 

'node = latency of a node 

1 It should be noted that the XC6200 is used purely for illustration and the proposed mapping 
in no way depends on any XC6200 specific features. Its choice here was motivated by the 
authors' familiarity with its CAD tools rather than any architectural considerations. 



«trees = total number of trees to be evaluated 

itcontext = number of trees per context 

«tests = total number of fitness tests 

ftestgen = test generator latency 

'crossbar = crossbar latency 

'fitcomp = fitness computation latency 

'fitreg = fitness register latency 

The first term within the parenthesis 
represents the time required for pipelined 
execution of the test cases while the re- 
maining terms account for the pipeline fill 
time. The sum within the parenthesis is 

the time in each of the 

texts. 
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Fig. 5. Datapath for fitness evaluation. All nodes of 
multiple trees are evaluated in parallel. 

5.3    Evolution Phase 

Evolution involves modifying some of the programs, letting a portion of the programs die (based 
on their fitness), and generating new programs to replace the dead ones. In this phase, self- 
reconfiguration is utilized to modify some of the trees and generate new ones. The modification is 
achieved through the genetic operations of mutation and crossover while reproduction is used to 
create new programs. Below we discuss how the ability of self-reconfigurable FPGAs to modify 
their own configuration is used to implement the genetic operators that manipulate the trees. It 
should be noted that the evolution phase consumes only 1-5% of the total execution time. Hence 
the discussion below is qualitative in nature and illustrates how self-reconfiguration elegantly 
implements the three genetic operations on the FPGA, without any external intervention. 

Figure 6 shows the major logic blocks required to perform evolution. This logic operates in 
bit-serial fashion and is configured on a separate context. The random number generators shown 
can be efficiently implemented as discussed in [9]. The tree template shown has the same number 
of nodes as other templates but node contents differ. Each node of the template stores its own 
offset address. For e.g. the root node stores ^. These can be efficiently stored in each node using 
log2 n flip-flops. The offset—added to a tree base address—is used by the configuration memory 
interface to access a node of that tree. Each node also has an active bit which when set causes it 
shift out its address in bit-serial fashion. The logic shown solves in an elegant manner the problem 
of subtree traversal which is used for all the three operations as described below. 

Reproduction The active bit of the root node of the tree template is set. Next the increment 
signal is applied for k (number of levels in template) clock cycles. In response to the increment 
signal all active nodes (while remaining active themselves) set the active bits of their child nodes. 
Thus after k clock cycles, all nodes are active. Next, one bit of the shift register is set (rest are 
0). The offset address of the corresponding node is read out and is used to read a node from the 
source tree and write it into the destination tree template. Next the shift register advances one 
location and another node gets copied. In this manner, after n shifts, a tree is reproduced. 
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Fig. 6. Logic for the evolution phase. The tree template shown is used to map the node numbers 
onto the linear configuration memory address space. Each node stores its own offset address. 

Crossover The problem is to swap (randomly chosen) subtrees of two (randomly chosen) par- 
ents. The key operation is the subtree traversal which is elegantly done. The output of the random 
node number generator is used to set the active bit of one node which forms the root of the sub- 
tree. Next (as in reproduction), the increment signal is applied for k clocks after which the active 
bits of all the nodes of the subtree are set. The shift register (with a single bit set) is then shifted n 
times. On each shift, the address of the corresponding node (if active) is read out. In this manner, 
after n shifts, the subtree is traversed. The crossover operation requires four such traversals, two 
for each of the subtrees. In the first two traversals, the subtrees are read into scratchpad configu- 
ration memory. In the next two traversals, they are written into each others' original locations. 

Mutation Mutation involves replacing a randomly selected subtree with a randomly generated 
subtree. The subtree selection and traversal are performed as for crossover above. For each node 
visited during the traversal, its current configuration is replaced by the contents corresponding to 
the output of the random function number generator. 

6   Implementation 

We evaluated the performance of our approach in the following manner. We chose two GP prob- 
lems as benchmarks. Both problems were selected from Koza's Genetic Programming[&]. For 
each we implemented the fitness evaluation logic (as discussed in Section 5.2) onto a conven- 
tional FPGA. This implementation was used to obtain the minimum clock cycle time and the 
maximum number of trees that fit on a single context. Using this information and Equation 1 the 
time required by our approach to perform fitness evaluation was computed. Next, a software im- 
plementation of the two benchmarks was run and the time spent on fitness evaluation measured. 
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Fig. 7. A section of the layout for the multiplexer problem with 127 node tree templates. 

The speedup obtained using our approach was then computed from the fitness evaluation times 
of both the approaches and Equation 1. 

The choice of the two problems was motivated by the nature of their function sets (explained 
in Section 3). For one of the problems (multiplexer), all the members of its function set were 
bit-level logic functions. For the other (regression) all function set members were arithmetic 
functions operating on integers. Clearly, FPGAs would provide a greater speedup over a micro- 
processor for the former problem compared with the latter. Typically, the function set of a GP 
problem contains a mix of arithmetic and logic functions. Therefore, performance evaluation of 
the chosen problems would yield an estimate of the range of speedups that can be obtained over 
a microprocessor. 

The following two GP problems were chosen: 

Multiplexer The problem is to evolve a program that exhibits the same behavior as a multiplexer 
having 8 data inputs and 3 control inputs. The test cases are all 211 possible inputs. The 
corresponding expected values are the boolean outputs a multiplexer would produce. The 
function set consists of logic functions and, or and not, and the if function which is 
essentially a multiplexer with 2 data inputs and a control input. The functions are much 
simpler than needed by many GP applications. But real problems such as evolution of BDDs 
also employ such simple functions. The terminal set has 11 members—the 8 data inputs and 
the 3 control inputs. 

Regression the problem is to evolve a function that "fits" a number of known (x,y) points. 
The x coordinates are used as the fitness cases while the corresponding y is the expected 
value. We use 200 test cases (ntests=200). The function set consists of add, subtract and 
multiply. The terminal set consists of the input value x and integer constants in the range 

[-M)- 

7   Performance Evaluation 

The Xilinx XC 6264 was used as the target FPGA. Required logic was specified in structural 
VHDL and translated to EDIF format using velab. XACT 6000 was used for place, route and 
configuration file generation. Software implementation of the benchmarks was carried out using 
the lil-gp kernel [14]. The resulting executable was run on a PC with a 200 MHz Pentium Pro 
processor and 64 MB RAM. The population size for both approaches was fixed at 100 individuals. 

7.1    Multiplexer 

Area Requirements Figure 7 shows the layout on a Xilinx XC 6264 (128 x 128 logic cells) 
of two trees (each having 127 nodes) and the associated (simulated) crossbar for the multiplexor 



problem—it is similar to Figure 5 (except for the test case generator which appears on the right 
side). For this problem, the fitness computation logic reduces to an XOR gate and the cumulative 
fitness register is just a counter controlled by the XOR gate output (these appear on the top and 
bottom of the trees). To model the worst case delay through an actual crossbar, all inputs to each 
tree originate from the crossbar row furthest from it. Since two trees (and cross bar) fit in 20 rows, 
the 128 row FPGA can accommodate 12 127 node trees on it. The layout for the 63 node trees is 
similar except they occupy half the number of columns—thus twice as many 63 node trees fit on 
to the FPGA. 

From the above mapped logic, the minimum clock cycle time (t^) for both tree sizes was 
determined which is shown in Table 1. It should be noted that the major component of t^is the 
crossbar—the critical paths through the 127 and 63 node trees were just 14.31 ns and 12.47 ns. 
Thus an efficient crossbar can provide even further improvements. Also shown are the number 
of clock cycles required which are computed using Equation 1 for ntrees=100 and ntcomext=12 
and 24. It should be clear from Figure 7 that all the times in Equation 1 (including tnode) aie 

equal to t^. Finally multiplying by tclkyields the time TFE required to fitness evaluate a single 
generation of 100 trees using the proposed approach. It should be noted that TFE is for fitness 
evaluation of all trees on all contexts. 

Table 1. Area requirements for the multiplexor problem for tree templates having 127 and 63 
nodes. Each context has 128 x 128 logic cells. 

Structure Area (in logic cells) 

n = 127 nodes n = 63 nodes 
Tree template 127x3 63 x 3 
Crossbar 127 x 11 63 x 11 
Test case generator 1 x 11 1 x 11 
Fitness logic 12 x 3 12x3 

Number of trees per context (ntcontext) 12 24 

Table 2. Time required to fitness evaluate 
100 trees using proposed approach. 

Table 3. Fitness evaluation times for a 
generation of 100 individuals. 

Area (in logic cells) 
n = 127 nodes n = 63 nodes 

Clock cycle (t^) 48.96 ns 37.08 ns 
Clock cycles 18531 10290 
Time taken (TFE) 907.3 /is 381.6 [is 

Approach TFE 

n — 127 nodes n = = 63 nodes 
Proposed 907.3 ps 381.6 /JS 

Software 930 ms 440 ms 

Speedup 1025 1153 

Time Requirements To obtain TFE for the software implementation, it was executed for a 
population size of a 100 individuals. This experiment was conducted twice with the maximum 
nodes per tree restricted to 127 and 63 thus ensuring that the tree size limits are the same as in 
our approach. Each time, execution was carried out for a 100 generations and the total time spent 
on fitness evaluation was noted. From this, the average fitness evaluation time per generation was 
obtained which is shown in Table 3. As can be seen, the proposed approach is almost three orders 
of magnitude faster than a software implementation (for fitness evaluation). 



7.2    Regression 

Area Requirements Regression requires much greater area compared to the multiplexer prob- 
lem due to the (bit-serial) multiply operation—each node requires 4 x 16 logic cells. Table 4 
shows the area requirements. Note that since the terminal set consists of just one variable (x), in 
contrast to 11 for the multiplexer, the crossbar reduces to 124 x 1 logic cells. The other termi- 
nal set members (integer constants) are implemented by embedding them in the corresponding 
terminal nodes. Two 31 node trees and the associated circuitry fit into 35 rows of the XC 6264. 
Thus 6 trees can be accommodated. The fitness computation and accumulation logic consists of 
bit-serial comparator and adder. 

Table 4. Area requirements for the regression problem for a tree template 31 nodes. Each context 
has 128 x 128 logic cells. 

Structure Area (in logic cells) 

n = 31 nodes 
Tree template 124 x 16 
Crossbar 124 x 1 
Test case generator 1 x 16 
Fitness logic 20x2 

Number of trees per context (ntcontext) 6 

Table 5. Time required to fitness evaluate 
100 trees using proposed approach. 

Table 6. Fitness evaluation times for a 
generation of 100 individuals. 

Area (in logic cells) 
n = 31 nodes 

Clock cycle (£cu<) 28.86 ns 
Clock cycles 115073 
Time taken (TFE) 3321.0 [is 

Approach TFE 

n = 31 nodes 
Proposed 3321.0 ps 
Software 62.9 ms 

Speedup 19.0 

Time Requirements Operands are 16-bit values and all operations are performed in a bit- 
serial fashion. Latency tnode=33 clock cycles due to the multiply (only 16 MSB used). As can 
be seen from Table 5, the latency (in number of clock cycles) is higher but the clock cycle time 
is lower (since the "crossbar" is smaller and remains fixed) compared to the multiplexor. Clock 
cycles are computed for ntests=200. Table 6 shows that the proposed approach achieves a speedup 
of 19 (in fitness evaluation) over a software implementation for the regression problem. This is a 
significant speedup for a single FPGA considering the arithmetic intensive nature of the problem. 

8   Conclusion 

We have demonstrated dramatic speedups—of upto three orders of magnitude—for fitness eval- 
uation, the GP phase that consumes 95-99% of execution time. This speedup is achieved due to 
the fast, compact representation of the program trees on the FPGA. The representation enables 
parallel, pipelined execution of all nodes in parallel and also concurrent execution of multiple 
trees. 



It should be noted that self-reconfiguration is essential for the above speedup. In the absence 
of self-reconfiguration, the evolution phase would be performed off-chip, and the resulting trees 
would have to be reconfigured onto the FPGA doing which would consume about 1 ms per 
context (much more if configuration done over a slow I/O bus). As can be seen from Section 7 our 
approach fitness evaluates a several contexts of trees in less than 1 ms. Since the reconfiguration 
time is greater than the execution time, the speedups obtained would be greatly reduced. 

Self-reconfiguration eliminates external intervention and the associated penalty by allowing 
the chip to modify its own configuration and thus perform the evolution phase on-chip. We have 
also shown an elegant technique for performing the evolution phase using self-reconfiguration. 
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Introduction 
Reconfigurable architectures vary from systems which have FPGAs and glue logic attached to 
a host computer to systems which include configurable logic on the same die as a micropro- 
cessor. Automatic compilation of applications onto reconfigurable architectures involves not 
only configuration generation, but also configuration management. Currently, there is no uni- 
fied methodology for mapping applications to configurable hardware. 

In this paper we describe algorithmic techniques for automatic mapping of applications in a 
platform independent fashion. We have developed an abstract model of reconfigurable archi- 
tectures. This parameterized abstract model is general enough to capture a wide range of con- 
figurable systems. These include board level systems which have FPGAs as configurable com- 
puting logic to systems on a chip which have configurable logic arrays on the same die as the 
microprocessor. 

Configurable logic is very effective in speeding up regular, repetitive computations. Loop con- 
structs in general purpose programs are one such class of computations. In this paper, we ad- 
dress the problem of mapping a loop construct onto configurable architectures. The Hybrid 
System Architecture Model(HySAM) that we have developed is utilized to define the mapping 
problems. Efficient techniques based on dynamic programming are used to develop an optimal 
schedule for important variants of the problem. The problem of utilizing on-chip reconfigura- 
tion cache resources is addressed in this paper. The techniques are illustrated by mapping an 
example FFT loop onto the Berkeley Garp architecture. 

Hybrid System Architecture Model(HySAM) 

* This work was supported by the DARPA Adaptive Computing Systems Program under contract DABT63-96- 
C-0049 monitored by Fort Hauchuca. 
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To realize a formal framework for algorithm development, we developed the Hybrid System 
Architecture Model of reconfigurable architectures. The Hybrid System Architecture is a gen- 
eral architecture consisting of a conventional microprocessor with an additional Configurable 
Logic Unit(CLU). The architecture consists of a conventional microprocessor, standard mem- 
ory, configurable logic, configuration memory and data buffers communicating through an in- 
terconnection network. Key parameters of the Hybrid System Architecture Model(HySAM) 
are outlined below. 

F : Set of functions Fx... Fn which can be performed on configurable logic. 

C : Set of possible configurations C\... Cm of the Configurable Logic Unit. 
Aij : Set of attributes for implementation of function F,- using configuration Cj(execution 

time, precision etc.). 

Rij : Reconfiguration cost in changing configuration from C,- to Cj. 
G : Set of generators which abstract the composition of configurations to generate more 

configurations. 
B : Bandwidth of the interconnection network(bytes/cycle). 

The parameterized HySAM models a wide range of systems from board level architectures to 
systems on a chip. The values for each of the parameters establish the architecture and also 
dictate the class of applications which can be effectively mapped onto the architecture. For ex- 
ample, a system on a chip architecture would have potentially faster reconfiguration times than 
a board level architecture. 

Mapping Loop Statements 
Scheduling a general sequence of tasks with a set of dependencies to minimize the total execu- 
tion time is known to be an NP-complete problem. We consider the problem of generating this 
sequence of configurations for loop constructs which have a sequence of statements to be exe- 
cuted in linear order. There is a linear data or control dependency between the tasks. Most loop 
constructs, including those which are mapped onto high performance pipelined configurations, 
fall into such a class. 

The total execution time includes the time taken to execute the tasks in the chosen configurations 
and the time spent in reconfiguring the logic between successive configurations. We have to 
not only choose configurations which execute the given tasks fast, but also have to reduce the 
reconfiguration time. It is possible to choose one of many possible configurations for each task 
execution. Also, the reconfiguration time depends on the choice of configurations that we make. 

Problem: Given a sequence of tasks of a loop, Tx through Tp to be executed in linear order( Tx 

T2... Tp), where Tt € F, for N number of iterations, find an optimal sequence of configurations 
S (=Ci C2... Cq), where Si € C (={Ci,C2,.. .,Cm}) which minimizes the execution time cost 
E. E is, defined as 



E = £(*s, + Ri-u) 
i=\ 

where is, is execution time in configuration £,■ and Ri-u is reconfiguration cost. 

Optimal Solution for Mapping Loops 
A simple greedy approach of choosing the best configuration for each task will not work since 
the reconfiguration costs for later tasks are affected by the choice of configuration for the current 
task. We outline our dynamic programming based approach below without proofs: 

Lemma 1: Given a sequence of tasks T[V2 ...T'p, an optimal sequence of configurations for 
executing these tasks once can be computed in 0(pm2) time. 

Lemma 1 provides a solution for an optimal sequence of configurations to compute one iteration 
of the loop statement. But repeating this sequence of configurations is not guaranteed to give 
an optimal execution for N iterations. 

Lemma 2 An optimal configuration sequence can be computed by unrolling the loop only m 
times. 

Theorem 1 The optimal sequence of configurations for iV iterations of a loop statement with p 
tasks, when each task can be executed in one of m possible configurations, can be computed in 
0(pm3) time. O 

Theorem 1 is derived from Lemma 1 and Lemma 2 and the complexity of the algorithm is 
0(pm3). This approach can also be used when the number of iterations N is not known at com- 
pile time and is determined at runtime. The decision to use this sequence of configurations to 
execute the loop can be taken at runtime from the statically known loop setup and single itera- 
tion execution costs and the runtime determined N. 

Multiple Contexts and Configuration Caches 
The performance achievable on reconfigurable architectures is limited by the costs involved 
in reconfiguring the logic. Currently, this overhead is very high and discourages the reconfig- 
uration of the logic during the execution of a single application. To address this problem ar- 
chitectures which support configuration caches and multiple contexts on the devices are being 
developed. We extend the above approach for these devices with the following assumptions 
regarding the HySAM model: 

1. Nc number of configurations can be loaded on to the device at the start of the computation. 

2. There is one active context which can be configured from any of the Nc configurations 
with a cost kc. 

3. The pre-loaded configurations can not be modified during the execution of the complete 
application. Only the active context can be reconfigured externally. 



We define an additional variable X,j, 1 < j < 2 * m, which is the set of contexts which are 
cached for executing tasks 7\ to T, with Tt being executed using configuration Cj. The Eij and 
the Xij (1 < i < 2 * m) values are computed using dynamic programming. The recursive 
equations for computing them are given below(^j denotes the reconfiguration cost): 

mink = k s.t. min[Eik + Skj]  1 < k <2 * m 

if (Cj e Xik) 
Okj  = Kc 

else if (\Xkj\ < Nc and 1 < j < m) 
Okj — kc 

else 
hj = Rij 

Given the value of mink, the £,-+ij and the Xi+ij values are computed as follows: 

l-'i+lj     —     ^i+lj    I   f-'i mink   i   Omink j 

Xi+lj      =     A,' mt'„fc U Cj 

if \Ximink\ < Nc and 1 < j < m) 

=   -^i mmfc    otherwise 

The minimum execution cost £" and the corresponding set of contexts X for executing tasks T\ 
to Tp are given by: 

minj = j s.t. min[Epj] 1 < j < 2 * 772 

■C' — •C'p minj 

Y — Y ■**   — ^p minj 

The required optimal execution cost and the set of contexts can be computed by using dynamic 
programming. O 

Illustrative Example 
We illustrate the techniques by mapping the loop containing FFT butterfly operations. The but- 
terfly operation consists of one complex multiply, one complex addition and one complex sub- 
traction. First, the loop statements were decomposed into functions which can be executed on 
the CLU, given the list of functions in Table 1. One complex multiplication consists of four 
multiplications, one addition and one subtraction. Each complex addition and subtraction con- 
sist of two additions and subtractions respectively. The statements in the loop were mapped 
to multiplications, additions and subtractions which resulted in the task sequence Tm,Tm,Tm, 
Tm, Ta, Ts, Ta, Ta, Ts, Ts. Here, Tm is the multiplication task mapped to function Fi, Ta is the 
addition task mapped to function F2 and Ts is the subtraction task mapped to function F3. 



Function Operation Configuration Configuration 
Time 

Execution 
Time 

Fi Multiplication(Fast) Ci 14.4 /is 37.5 ns 
Multiplication(Slow) c2 6.4 ,us 52.5 ns 

F2 Addition c3 1.6 (is 7.5 ns 
F3 Subtraction c4 1.6 ^s 7.5 ns 
F4 Shift c5 3.2 fi& 7.5 ns 

Figure 1: Representative Model Parameters for Garp Reconfigurable Architecture 

The optimal sequence of configurations for this task sequence, using our algorithm, was C\ ,C3,C4 ,C3 ,C4 

repeated for all the iterations. The most important aspect of the solution is that the multiplier 
configuration in the solution is actually the slower configuration. The reconfiguration overhead 
is lower for C2 and hence the higher execution cost is amortized over all the iterations of the 
loop. The total execution time is given by N * 13.055 (is where N is the number of iterations. 

Conclusions 
Mapping of applications in an architecture independent fashion can provide a framework for 
automatic compilation of applications. Loop structures with regular repetitive computations 
can be speeded-up by using configurable hardware. We developed dynamic programming based 
approaches to efficiently map tasks in a loop to a sequence of configurations. We illustrated our 
approach by developing algorithms for some variants of the mapping problem. 
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The Problem 
During the past few years, the rapid advances in fab- 

rication technology has led to the development of pro- 
grammable devices (e.g., FPGAs) with substantial com- 
putational power. As a result, reconfigurable hardware is 
being used beyond the initial applications of rapid pro- 
totyping and emulation into several areas of general pur- 
pose computation. Existing evidence suggests that using 
programmable devices for DoD applications will result in 
performance capabilities that are 2-3 orders of magnitude 
better than technologies currently being used [2]. 

Currently used military platforms are mainly based 
on ASICs to meet the real-time constraints and compu- 
tational demands in battlefield environments. Reconfig- 
urable Computing (i.e., computing using programmable 
hardware) can "outperform" ASICs by exploiting its abil- 
ity to create hardware at runtime based on input param- 
eters. If the logic remains static for all the instances of 
the problem, then an ASIC implementation would pro- 
vide superior time performance. In addition, the essential 
struggle against time in the battlefield necessitates that 
the hardware adaptation has to be performed very fast. 
However, existing mapping techniques require extensive 
mapping time which is a major bottleneck in the case of 
any mapping that needs to be performed at runtime based 
upon the problem instance. 

Existing mapping techniques for FPGAs have adopted 
the ASIC-based design flow and tools that prevent the Re- 
configurable Computing paradigm from achieving its full 
potential: provide the performance benefits of ASICs and 
the flexibility of microprocessors. For one thing, current 
design compilation times are too long and preclude any 
run-time, dynamic modification of the configurations. For 
another, the characteristics of the application are not uti- 

*This research was performed as part of the MAARC project 
(http://maarc.usc.edu). This work is supported by the DARPA 
Adaptive Computing Systems program under contract no. 
DABT63-96-C-0049 monitored by Fort Hauchuca. 

lized, resulting in sub-optimal designs with respect to area 
and delay performance unless the designs are optimized by 
hand. 

Our Approach to Run-time Mapping 
Most of the mapping techniques proposed in the litera- 

ture ignore the extensive overhead of the CAD tools at run- 
time. We believe however, that addressing this overhead 
is the key to fully exploit the Reconfigurable Computing 
advantages over ASICs and software based approaches. 

Our approach to run-time mapping is to handle the 
mapping problem as an algorithm synthesis problem as 
opposed to "stuffing logic into a black box." Our key 
idea is to develop problem-specific configurations off-line 
to facilitate run-time mapping. These configurations are 
specific to the problem to be solved and are based on the 
algorithm that is used to solve the problem. At runtime, 
a mapping algorithm adapts the hardware to the input 
problem-instance. Our performance metric includes the 
time to compute the logic to be mapped, the time to con- 
figure the hardware, and the execution time on hardware. 

The novelty of our approach is that the CAD tools bot- 
tleneck is alleviated from the critical path to the solution. 
The mapping process is driven by problem-specific con- 
figurations that are derived off-line. Thereby, there is no 
need for a complete redesign for each problem-instance. 
Equally important, the mapping process is aware of the 
characteristics of both the problem and the target archi- 
tecture. Not only does the approach significantly speed up 
run-time mapping but also produces fast, compact logic 
reducing execution time as well. Preliminary results indi- 
cate that our approach can result in a speedup of at least 
two orders of magnitude comparing with the state-of-the- 
art. 

A Case Study: Single-Source Shortest 
Path Problem 

In our current efforts, we are focusing on map- 
ping graph-problem instances onto multi-FPGA systems. 



Problem size 

# vertices x # edges 

Clock rate 
(MHz) 

fll       0ur 1 J      solution 

Execution time 
(usec) 

m            0ur 1 J              solution 

Mapping time 

m *                 Our « 
1 J                    solution 

Effective Speed-up 

16 x    64 1.79       15 8.94          21.42 - 4 hours       -   22 msec 6.5 x106 

64 x 256 1.14       15 56.14          79.02 - 4 hours       -   82 msec 1.7x106 

128 x 515 0.78       15 164.10       199.72 - 8 hours       - 161 msec 1.8x106 

256 X1140 0.34       15 752.94       493.17 -16 hours       -319 msec 1.8 x106 

a cluster or 10 workstations was used 

■ memory-array bandwidth 4MB/sec is assumed as in [1 ] 

Table 1: Performance comparison with the state-of-the-art 

Graph problems are the most frequently solved class of 
optimization problems (e.g., problems of heuristic search, 
deterministic optimal control problems, or data routing 
within a computer communication network). 

In the state-of-the-art technique for solving graph prob- 
lems using FPGAs [1], the input graph instance is embed- 
ded in the FPGAs by using general purpose CAD tools. A 
complete redesign is required for a new problem instance 
and the resulting implementation lacks modularity. Par- 
titioning and place-and-route take several hours while the 
corresponding execution time on hardware is in the range 
of usec. However, the mapping time is usually ignored and 
only the execution time is considered as runtime. 

Besides the mapping overhead, the mapping of edges 
onto the physical wires of a device results in extremely 
slow clock rate and very high area requirements. The clock 
rate depends on the longest wire in the layout. As the 
number of vertices increases, the longest wire length in- 
creases rapidly resulting in fast degradation of the clock 
rate. Also, the area requirements depend on the connec- 
tivity of the input graph and increase rapidly for dense 
graph instances. Therefore, the clock rate and the area 
requirements cannot be reliably estimated before actually 
mapping onto hardware. 

To illustrate the superiority of our ideas, we briefly de- 
scribe a solution for the single-source shortest path prob- 
lem using our approach and compare it against the state- 
of-the-art (based on CAD tools). Given a weighted, di- 
rected graph and a source vertex, the problem is to find a 
shortest path from the source to every other vertex. 

A problem-specific configuration is developed based on 
the Bellman-Ford algorithm. The configuration corre- 
sponds to a general graph with n vertices and e edges and 
consists of n modules connected in a pipelined fashion. 
Each module corresponds to a vertex. At runtime, the 
problem-specific configuration is adapted to the character- 
istics of the input graph instance. At the module level, the 
precision of the functional units is adapted to the precision 
requirements and the number of vertices and edges of the 
input graph instance. Moreover, at the layout level, the 
number of the modules mapped onto hardware is deter- 
mined by the number of vertices in the input instance. Fi- 

nally, the clock speed is determined by the computational 
rate of the modules and the available I/O bandwidth. The 
resulting implementation is a modular design that can be 
easily adapted to any input instance without the need for 
complete redesign. 

Our solution is asymptotically faster than the state-of- 
the-art [1]. The mapping time is six orders of magnitude 
smaller (see Table 1). As a result, the effective speed- 
up (e.g., considering both the execution and the mapping 
time) comparing with the solution in [1] is 106. Moreover, 
the clock speed only depends on the data precision of the 
input graph instance and not on the size and the connec- 
tivity of the graph instance as in [1]. Also, the hardware 
requirements increase as a linear function of the number 
of vertices. Consequently, the on-chip execution time and 
the area requirements can be accurately estimated based 
on the problem-specific configuration. 

Conclusions 
In this paper we demonstrated a case-study solution 

that achieves 6 orders of magnitude speedup over the state- 
of-the art for mapping graph-problem instances onto FP- 
GAs. The novelty of our approach is that the mapping 
process performs an incremental adaptation of problem- 
specific configurations to the input problem instance in- 
stead of a complete redesign. Not only does the approach 
significantly speedup run-time mapping but also produces 
fast, compact logic which reduces the execution time on 
hardware as well. 

Our approach can also be applied to other application 
domains (e.g., image and signal processing, cryptography) 
where adaptivity to problem instance is required. We be- 
lieve that by addressing the run-time mapping problem, 
Reconfigurable Computing can become an attractive com- 
puting paradigm for specific military applications. 
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1 Introduction 

In typical VLSI and processor based architectures, the computational units have fixed precision which can 
not be modified during computation. The precision of operands implemented in such architectures is based 
on the worst case bounds for the precision of the input values. Some applications also need precision much 
higher than that available in typical hardware architectures [3]. For such long-precision arithmetic, software 
algorithms are employed to obtain the desired precision. Long-precision computations typically operate digit 
by digit, serially. The iterative computations mean that the execution time of an operation increases as the 
required precision increases. Performing computations using the exact precision required for accurate results 
can reduce the resources utilized. 

One of the significant advantages of reconfigurable hardware is the ability to perform variable precision com- 
putations [4]. Reconfigurable hardware contains fine-grained configurable resources which can be utilized 
to build computing modules of various sizes. For example, it is possible to build a standard 16-bitx 16-bit 
multiplier or a 8-bit x 12-bit multiplier using reconfigurable hardware. The 8-bit x 12-bit multiplier would 
consume less area and execute faster than the standard 16-bitx 16-bit multiplier. Reconfigurable architec- 
tures also support dynamic precision, which is the ability of the hardware to change its precision at run-time 
in response to variant precision demands of the algorithm. 

In this paper we outline our framework for managing the dynamic precision variation. We represent the vari- 
ation in the required precision for an operation by using & precision variation curve. The precision variation 
curve quantifies the variation in the required precision for an operation over time. The concept of time can 
represented by using various measures such as execution time, program counter, loop counter, etc. 

In this paper we analyze the variation of precision in loop computations as the iterations of the loops progress. 
Compile-time and run-time techniques to determine the precision variation curve for a given computation 
are described. Various algorithmic techniques are developed for optimal mapping of the computations onto 
reconfigurable hardware [1,2]. We illustrate the utility of our approach by demonstrating the performance 
improvement for an example operation. 

2 Quantifying the Precision Variation 

For iterative computations in which values are accumulated over the execution time of the application, the 

* This work was supported by the D ARPA Adaptive Computing Systems Program under contract D ABT63-96-C-0049 monitored 
by Fort Hauchuca. 



precision varies as the iterations progress. We represent this variation in terms of the loop iterations by using 
the precision variation curve. 

2.1 Precision Variation Curve 

The precision variation curve facilitates the representation of the notion of the variation in the precision of 
the operands and the operation as the execution of the loop progresses. A simple method to represent such a 
variation is to indicate the precision of the operand for each iteration so that the precision is defined for the 
complete iteration space. But, the precision usually varies very slowly as the iterations progress. Thus the 
precision variation curve can be represented by specifying the points where the precision of the operands or 
the operation changes. 

Definition: The precision variation curve for a given operation or operand in a loop computation can be 
represented by the sequence (/,-, pi), l<i<u. /; denotes the iteration number at which a change in precision 
takes place due to the computation. /, < N where N is the total number of iterations, p,; denotes the precision 
required for performing iterations /, to /,-+1 - 1 for 1 < i < u and pu denotes the precision required for 
performing iterations lu to N. 

2.2 Compile-time Analysis of Loops 

We can theoretically determine the precision variation curve for the operations in a given computation. The 
precision of computed variables in a loop is determined by the precision of the variables before the iteration, 
the number of iterations and the operations performed on the variable. For each type of arithmetic operation, 
the maximum possible precision of the result can be expressed using the above values. For example, the 
precision of an integer variable X(initially 0) after iV iterations of a loop which contains the statement X = 
X + C is bounded by 

Pr(X) < Pr{C) + \\og{N + 1)] 

where Pr(X) denotes the bit size of the variable X. The analysis is not limited to simple expressions, but 
extends to complex arithmetic expressions in loops. For recursive expressions in loops where the value of 
the variable X in iteration i is given by Xi, if 

Xi = ci * Xh + c2 * XJ2 + ■ • • + ck * Xjk = S|=iQ * Xjt 

then the upper bound on the precision of Xi is given by 

Pr(Xi) < (i - 1) * log C + (i - 1) * log k + Pr[Xx) 

where C = max [c\, c2,..., Cfc], the maximum of the constant coefficients. The analysis is valid for integer 
and fixed-point computations and is not necessarily valid for floating point computations. But, the analysis 
still covers a large class of signal and image processing applications. 

2.3 Run-time Analysis 

Theoretical analysis of expressions in loops computes the upper bounds on the precision of the variables and 
computations. This determines the minimum precision required to represent these variables. The estimates 
using theoretical analysis are conservative and can usually be much higher than the actual precision of the 
operands. For example, using the above analysis for the Fibonacci series Xi = X;_i + Xt_2. we obtain 
Pr(Xi) = i - 1 and hence, Pr(X15) = 14. But, Xi5 = 610 which needs only 10 bits. Even when a 
tight bound can be computed, the actual precision might be lower than theoretical estimate. This can occur 
when the data inputs are assumed to have maximum precision, but are actually randomly distributed over the 
complete input range. 



Theoretical analysis can provide significant performance benefits which can be augmented by using profiling 
based analysis. For computations which do not have a tight bound on the precision and for computations with 
complex control flow, computing the required precision by using run-time statistics is a viable alternative. 
The application can be instrumented to measure the precision of the different variables and the knowledge can 
be utilized by the mapping tool or the compiler to identify the required precision at various program points. 

3 Dynamic Precision Management 

Given the precision variation curve for a loop, we need to determine the mapping of the iterations to a set of 
configurations which are used to execute the operations in the loop. For each iteration, the precision of the 
corresponding configuration which executes the iteration should be equal to or greater than the required pre- 
cision for that iteration. The greedy strategy of reconfiguring the hardware whenever the required precision 
changes can result in significant reconfiguration overheads. For architectures in which the reconfiguration 
times are much higher than the execution times, the reconfiguration overhead might be prohibitive. Also, 
the set of configurations which are available for executing an operation might not encompass all the possible 
precision values that are required. Some of the operations will have to be executed with more precision than 
is necessary in the absence of configurations with the exact precision. 

Thus, it is necessary to identify an optimal set of configurations which minimizes the overall execution cost, 
including the reconfiguration cost. We have developed efficient techniques to map application tasks onto 
available configurations using dynamic programming. Our algorithmic techniques consider the reconfigura- 
tion overheads in minimizing the total execution time for a given operation in a loop. 

4 An Illustrative Example 

We illustrate our approach by mapping the multiplication operation from the example code segment given be- 
low. We measured the total execution time for the MAXQ * SCALE (I) computation on Xilinx XC6200 [5] 
using five different approaches. The first two approaches do not exploit the dynamic precision variation. 

DO   10   1=1,N 
DO   20   J=1,N 

RSQ(J) = RSQ(J)+XDIFF(I,J)*YDIFF(I,J) 
20   IF (MAXQ.LT.RSQ(J)) THEN 

MAXQ = RSQ(J) 
POVERR = POVERR / MAXQ 

10 VIRTXY = VIRTXY + MAXQ * SCALE(I) 

The execution times including the reconfiguration times are summarized in Table 1. The approaches using 
dynamic precision achieve significantly lower execution times compared to the fixed precision approaches. 
Our dynamic programming based algorithm(DPMA) executed all the iterations of the loop in the minimum 
time for the theoretical(DPMA) and run-time precision variation cwrves(DPMA-run). The resultant optimal 
schedules have up to 30% lower execution cost compared with other approaches. 

5 Conclusions and Future Research 

Reconfigurable hardware can be utilized to exploit the dynamic precision variation in applications. We have 
shown how the variable precision in computations can be captured by using the precision variation curve. 
The information obtained from the precision variation is used to develop optimal schedules for dynamic pre- 
cision management. As illustrated using the example, reconfigurable hardware can provide significant ben- 
efits in application performance by using dynamic precision management. 



Table 1: Execution times using different approaches 

Algorithm Execution Reconfiguration Total 
Time (ns) Time (ns) (ns) 

Standard 655360 20480 675840 
Static 532480 17920 550400 

Greedy 468010 56320 524330 
DPMA 471160 33280 504440 

DPMA-run 409600 15360 424960 

The reduction of the resources by using dynamic precision can be utilized to achieve higher speed-up by 
realizing more parallelization and pipelining of the application. The given analysis represents the variation 
and optimization for a single operation in a loop. The application of such techniques for multiple operations 
and generic programs in addition to loops is under investigation. 
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import j ava.io.*; 
import j ava.awt. *; 
import j ava.awt.event.*; 

* DRIVE: Dynamically Reconfigurable Systems Interpretive Simulation 
* and Visualization Environment. 
* The main framework class which maintains the different components being 
* shown in the visualizer. Uses Mylistener to invoke actions for the menus. 
* The visualizer maintains many internal classes for different visual 
* components which are not accessible externally. It does not provide any 
* methods since it is the controller entity. The only public methods are 
* for displaying messages in the Log window. Drive can be instantiated by 
* another class and messages can be displayed using these methods. 
* 
* For latest information see <A HREF="http://maarc.usc.edu/"> 
* 

* @author Kiran Bondalapati 
* ©version 2.0 1999 
* ©see Hysam 
* ©see Device 
* ©see Scheduler 
* ©see EventList 
* ©see Event 
* ©see CLU 
*/ 

public class Drive extends Frame { 

Hysam myHysam; 
Device myDevice; 

CLUWin myCluWin; 
Scheduler mySchedule; 

private int params_loaded; 
private int appl_loaded; 
private int sched_loaded; 

/** The font style */ 
static final String fontName = "SansSerif"; 
static final int fontStyle = Font.BOLD; 
static final int fontSize = 12; 

static final int driveWidth = 1200; 
static final int driveHeight = 700; 

private int cluWidth = 500; 
private int cluHeight = 420; 

static final int xoffset = 10; 
static final int yoffset = 10; 

/* the time progress bar defaults */ 
static final int progressWidth = 400; 
static final int progressHeight = 20; 

Panel tpanel 
Panel bpanel 
Panel cpanel 
Panel ipanel 
Panel Ipanel; 

static final String timeFontName = "SansSerif" 
static final int timeFontStyle = Font.BOLD; 



static final int timeFontSize = 12; 

Label timeTitle; 
Label timeSpace; 
Label timeCurrentLabel; 
Label timeStartLabel; 
Canvas timeProgressWrap; 
ProgressBar timeProgress; 
Label timeFinishLabel; 

Label funcLabel; 
Label funddLabel; 
Label funcNameLabel; 
Label c on f Labe1; 
Label confIdLabel; 
Label confNameLabel; 
Label bwLabel; 
Label bwValueLabel; 

TextArea logText; 

MyMenuBar menuBar; 
EventHandler eh = new EventHandler(); 
MessageDialog dialog; 
FileDialog fdialog; 
DialogHandler dh = new DialogHandler(); 

public static void main(String args[]){ 

Drive tool = new Drive(); 
} 

public Drive() { 

super("DRIVE 2.0") ; 
this.setTitle("DRIVE 2.0"); 
setTitlef"DRIVE 2.0"); 

myHysam = new Hysam(); 
myDevice = new Device(); 
myDevice.resetCLU(); 

setFont(new Font(fontName, fontStyle, fontSize)); 

setupMenuBar(); 
setupWidgets(); 

} 

void setupWidgets() { 

GridBagLayout driveLay = new GridBagLayout(); 
GridBagConstraints driveConst = new GridBagConstraints(); 

setLayout(driveLay); 

tpanel = new Panel() 
bpanel = new Panel() 
cpanel = new Panel() 
ipanel = new Panel() 
lpanel = new Panel() 

//   driveConst.weightx = 1.0; 
//   driveConst.weighty = 0.1; 



driveConst.anchor = GridBagConstraints.NORTHWEST; 

driveConst.gridwidth = GridBagConstraints.REMAINDER; 
driveLay.setConstraints(tpanel, driveConst); 
add(tpanel); 

driveConst.anchor = GridBagConstraints.NORTHWEST; 
driveConst.gridx = 0; 
driveConst.gridy = 2; 
driveConst.gridwidth = GridBagConstraints.RELATIVE; 
//   driveConst.weightx = 0.75; 
//   driveConst.weighty = 1.0; 
driveLay.setConstraints(cpanel, driveConst); 
add(cpanel); 

driveConst.gridx = 1; 
driveConst.gridy = 2; 
//   driveConst.weightx = 1.0; 
//   driveConst.weighty = 1.0; 
driveConst.anchor = GridBagConstraints.NORTH; 
driveConst.gridwidth = GridBagConstraints.REMAINDER; 
driveLay.setConstraints(ipanel, driveConst); 
add(ipanel); 

driveConst.anchor = GridBagConstraints.NORTHWEST; 
driveConst.gridx = 0; 
driveConst.gridy = 3; 
//   driveConst.weightx = 1; 
//   driveConst.weighty = 0.5; 
driveLay.setConstraints{Ipanel, driveConst); 
add(Ipanel); 

//   setupButtons(); 
setupTimeWidgets(); 
setupCluWidgets(); 
setuplnfoWidgets(); 
setupLogWidgets(); 

setSize(driveWidth,driveHeight); 
addWindowListener(eh); 

pack(); 
show () ; 

} 

/* Set up the shortcut buttons 
void setupButtons() { 

bpanel.setFont(new Font(buttonFontName, buttonFontStyle, buttonFontSize)); 
loadParamButton = new Button("Step"); 
loadParamButton = new Button("Run"); 

} 
*/ 

/* Set up the time panel */ 
void setupTimeWidgets() { 

tpanel.setLayout(new FlowLayout(FlowLayout.LEFT)); 

tpanel.setFont(new Font(timeFontName, timeFontStyle, timeFontSize)); 

timeTitle = new Label("Time: "); 
timeCurrentLabel = new Label("0.000"); 



timeCurrentLabel.setSize(100,20); 
timeSpace = new Label("    ") ; 
timeStartLabel = new Label("0.000"); 
timeStartLabel.setSize(100,20); 
timeProgress = new ProgressBar(200,0,progressWidth,progressHeight); 
timeFinishLabel = new Label("0.000"); 
timeFinishLabel.setSize(100,20); 

tpanel.add(timeTitle); 
tpanel.add(timeCurrentLabel); 
tpanel.add(t imeSpace); 
tpanel.add(timeStartLabel); 
tpanel.add(timeProgress) ; 
tpanel.add(timeFinishLabel); 

tpanel.setVisible(true); 
timeProgress.repaint(); 

} 

/* Set up the CLU Windows */ 
void setupCluWidgetsO { 

cpanel.setLayout(new BorderLayout()); 

Label cluLabel = new Label(" CLU"); 
cpanel.add("North", cluLabel); 

myCluWin = new CLUWin(myDevice.getCLURows(),myDevice.getCLUCols() ) ; 

cluHeight = myDevice.getCLURows() * (CLUWin.cell_size+CLUWin.cell_space) + 2 * CLUWin. 
yoffset + 2*CLUWin.cell_size; 

cluWidth = myDevice.getCLUColsO * (CLUWin.cell_size+CLUWin.cell_space) + 2 * CLUWin.x 
offset; 

myCluWin.setSize(cluWidth, cluHeight); 
cpanel.setSize(cluHeight+ 2*CLUWin.yoffset, cluWidth+2*CLUWin.xoffset); 
cpanel.add("South", myCluWin); 

cpanel.setVisible(true); 

} 

/* Set up the windows for the information widgets */ 
void setuplnfoWidgets() { 

GridBagLayout infoLay = new GridBagLayout(); 
GridBagConstraints infoC = new GridBagConstraints(); 

ipanel.setSize(600,400); 
ipanel.setLayout(infoLay); 

infoC.fill = GridBagConstraints.NONE; 
infoC.anchor = GridBagConstraints.NORTHWEST; 

funcLabel = new Label("Function: "); 
infoLay.setConstraints(funcLabel, infoC); 
ipanel.add(funcLabel); 

infoC.gridx = 1; 
funddLabel = new Label (" 0") ; 
infoLay.setConstraints(funcIdLabel, infoC); 
ipanel.add(funcIdLabel); 

infoC.gridx = 2; 



infoC.gridwidth = GridBagConstraints.REMAINDER; 
funcNameLabel = new Label(" "); 
infoLay.setConstraints(funcNameLabel, infoC); 
ipanel.add(funcNameLabel); 

infoC.gridy = 1; 

infoC.gridx = 0; 
infoC.gridwidth = GridBagConstraints.RELATIVE; 
confLabel = new Label("Configuration: "); 
infoLay.setConstraints(confLabel, infoC); 
ipanel.add(confLabel); 

infoC.gridx = 2; 
confIdLabel = new Label("0   "); 
infoLay.setConstraints(confIdLabel, infoC); 
ipanel.add(confIdLabel); 

infoC.gridx = 4; 
infoC.gridwidth = GridBagConstraints.REMAINDER; 
confNameLabel = new Label("Initial "); 
infoLay.setConstraints(confNameLabel, infoC); 
ipanel.add(confNameLabel); 

infoC.gridy = 2; 

infoC.gridx = 0; 
infoC.gridwidth = GridBagConstraints.RELATIVE; 
bwLabel = new Label("Bandwidth: "); 
infoLay.setConstraints(bwLabel, infoC); 
ipanel.add(bwLabel); 

infoC.gridx = 2; 
infoC.gridwidth = GridBagConstraints.REMAINDER; 
bwValueLabel = new Label("32   "); 
infoLay.setConstraints(bwValueLabel, infoC); 
ipanel.add(bwValueLabel); 

} 

/* Set up the windows for the log widgets */ 

void setupLogWidgets() { 

GridBagLayout logLayout = new GridBagLayout(); 
GridBagConstraints logC = new GridBagConstraints(); 

Ipanel.setLayout(logLayout); 

logC.fill = GridBagConstraints.BOTH; 

logC.gridwidth = GridBagConstraints.REMAINDER; 
logC.gridheight = 1; 

Label logTitle = new Label("Log"); 
logLayout.setConstraints(logTitle, logC); 
Ipanel.add(logTitle); 

logC.gridx = 0; 
logC.gridy = 1; 

logC.weightx = 0.0; 
logText = new TextArea("******* DRIVE 2.0 Log ********\n",7,80,TextArea.SCROLLBARS_BOT 

H) 



logLayout.setConstraints(logText, logC); 
lpanel.add(logText); 

} 

void setupMenuBar(){ 
String computemenu[] = {"Compute","Linear","-Precision"}; 
Object menultems[][] = {{"File","Load Parameters","Load Application","Load Configurati 

on","Save Configuration","Exit"}, 
{"Edit","Parameters","Application"}, 
{"Schedule","Load Schedule",computemenu}, 
{"Simulate","-Step","-Run","-Reset"}, 
{"Help","About DRIVE"} 

}; 

menuBar = new MyMenuBar(menultems,eh,eh); 
setMenuBar(menuBar); 

} 

/** paint routine which calls CLU and time progress bar paints to make sure 
they draw themselves */ 

public void paint(Graphics g) { 
myCluWin.repaint(); 
timeProgress.repaint(); 

} 

/** Used in the menu bar selections */ 
class EventHandler extends WindowAdapter implements ActionListener, 

ItemListener { 
public void actionPerformed(ActionEvent e){ 

String selection=e.getActionCommand(); 

if ("Load Parameters".equals(selection)) { 
cmd_load_params(); 

} else if ("Load Application".equals(selection)) { 
cmd_load_appl(); 

} else if ("Exit".equals(selection)){ 
System.exit(0); 

} else if ("Linear".equals(selection) ) { 
cmd_compute_linear(); 

} else if ("Step".equals(selection)) { 
cmd_step_simul(); 

} else if ("Run".equals(selection)) { 
cmd_run_simul(); 

} else if ("Reset".equals(selection)) { 
cmd_reset_simul () ; 

) else if ("About DRIVE".equals(selection)) { 
cmd_about(); 

) 

public void itemStateChanged(ItemEvent e){ 
} 

public void windowClosing(WindowEvent e){ 
System.exit(0); 

} 



void cmd_load_params() { 

fdialog = new FileDialog(Drive.this, "Model Parameters File",fdialog.LOAD); 

fdialog.show(); 

String filename = fdialog.getFile(); 

System.out.print(filename+"\n"); 

try { 

StreamTokenizer pstream = new StreamTokenizer(new FileReader(filename)); 
pstream.commentChar('#'); 
pstream.eollsSignificant(false); 

if (myHysam.readParams(pstream) == 1) { 
params_loaded = 1; 
sched_loaded = 0; 

1ogText.append("Paramaters loaded from file: "+filename+"\n"); 

} 
} catch (Exception IOException) { 
logText.append("Error: Opening parameters file: "+filename+"\n"); 

} 

if ( (params_loaded == 1) && (appl_loaded ==1)) { 
menuBar.getMenu("Schedule").getltem("Linear").setEnabled(true); 

} 

} 

void cmd_load_appl() { 

int type =1; 
int result; 
int token; 

fdialog = new FileDialog(Drive.this, "Application Tasks File",fdialog.LOAD); 

fdialog.show(); 

String filename = fdialog.getFile(); 

try { 
StreamTokenizer astream = new StreamTokenizer(new FileReader(filename)); 

token = astream.nextToken(); 
type = (int)astream.nval; 

result = myHysam.readAppl(type,astream); 

if (result > 0) { 
appl_loaded = 1; 
sched_loaded = 0,- 

logText .appendf "Application loaded from file: "+filename+"\n"); 

} 
else { 
errorMessaged, "Application file: "+filename+" has errors.\n"); 

} 
} catch (Exception IOException) { 



errorMessaged, "Error: Could not open application file: "+filename+"\n"); 

} 

/* 
if ((appl_loaded == 1) && (params_loaded ==1)) { 

if (type == 1) { 
menuBar.getMenu("Schedule").getltem("Linear").setEnabled(true); 
menuBar.getMenu("Schedule").getltemf"Precision").setEnabled(true); 

} 
else if (type ==2) { 
menuBar.getMenu("Schedule").getltemf"Linear").setEnabled(false); 
menuBar.getMenu("Schedule").getltemf"Precision").setEnabled(true); 

} 
} 
*/ 

} 

/* Computes the linear schedule and gets the value of mySchedule */ 
void cmd_compute_linear() { 

if ((params_loaded == 1) && (appl_loaded ==1)) { 

mySchedule = myHysam.computeSchedulefl); 

if (mySchedule != null ) { 
sched_loaded = 1; 

logMessage("Computed schedule\n"); 

menuBar.getMenu("Simulate").getltem("Step").setEnabled(true); 
menuBar.getMenu("Simulate").getltemf"Run").setEnabled(true); 
menuBar.getMenu("Simulate").getltemf"Reset").setEnabled(true); 

} 
else { 
errorMessaged, "Error in computing schedule\n") ; 

} 
} 
else { 

/* flag error message saying load params and appl first */ 

errorMessaged, "Error: Parameters or Application not loaded\n"); 

} 
} 

/* Reset the simulation */ 
void cmd_reset_simul() { 

if (sched_loaded ==0) { 
errorMessaged, "Schedule not computed or loaded\n") ; 

} 
else { 

setFuncIdf'O") ; 
setFuncName(""); 
setConfldC'O") ; 
setConfName("Initial"); 
mySchedule.reset(); 
myCluWin.reset(); 
resetTime(); 
logMessagef"Simulation ResetNn"); 

} 
} 

/* Run the simulation */ 



void cmd_run_simul() { 
if (sched_loaded ==0) { 
errorMessaged, "Schedule not computed or loaded\n") ; 

} 
else { 

logMessage("Running Simulation\n"); 
setFinishTime( (new Float(mySchedule.getFinishTime())).toString() ) ; 

Event ev = mySchedule.getNextEvent(); 

while (ev != null) { 
show_one_step(ev); 

try { 
wait(1000000,0) ; 

} catch (Exception InterruptedException) { 
} 

ev = mySchedule.getNextEvent(); 
} 

} 
} 

/* Step through one event in the simulation */ 
void cmd_step_simul() { 

if (sched_loaded ==0) { 
errorMessaged, "Schedule not computed or loaded\n"); 

} 
else { 

setFinishTime( (new Float(mySchedule.getFinishTime())).toString() ); 

Event ev = mySchedule.getNextEvent(); 

if (ev!= null) 
show_one_step(ev); 

} 
} 

void show_one_step(Event ev) { 
if (ev.getTypeO == Scheduler.EXECUTE) { 

logMessage("Execute " +ev.getldl()+ " in " + ev.getld2()+"\n"); 

int fid = ev.getldl(); 
setFuncId( (new Integer(fid)).toString() ); 
setFuncName( myHysam.getFuncName(fid) ); 

int cid = ev.getld2(); 
setConfId( (new Integer(cid)).toString() ); 
setConfName( myHysam.getConfName(cid)); 

setCurrentTime( (new Float(ev.getStartTime())).toString() ); 
setTimeProgress(ev.getStartTime() / mySchedule.getFinishTime()); 

ConfigBit[] cbits = myHysam.getConfig(cid); 

if (cbits != null) { 
System.out.print("numbits in conf "+cid+" is "+cbits.length+"\n"); 

for(int i=0; i< cbits.length; i++) { 
cbits[i].setState(ConfigBit.ACTIVE); 

} 
myDevice.updateCLUConfig(cbits); 



myCluWin.updateDisplay(cbits); 
} 
else { 

System.out.print("Not able to access data for conf "+cid+"\n"); 
logMessage("Could not find configuration data for C"+cid+"\n"); 

} 

} else if (ev.getTypeO == Scheduler.RECONFIG) { 

logMessageC'Reconfig from " +ev.getldl()+ " to " + ev.getld2()+"\n"); 

setFuncIdC'O") ; 
setFuncName{""); 
int cidl = ev.getldl(); 
int cid2 = ev.getld2(); 
setConfldf (new Integer(cidl)).toString() 

+ " -> " 
+ (new Integer(cid2)).toStringt) 
); 

setConfName( myHysam.getConfName(cidl) 
+ " -> " 

+ myHysam.getConfName(cid2) 
); 

setCurrentTime( (new Float(ev.getStartTimef))).toStringf) ); 
setTimeProgress(ev.getStartTimef) / mySchedule.getFinishTime()); 

ConfigBit[] cbits = myHysam.getConfig(cid2); 

if (cbits != null) { 
System.out.print("numbits in conf "+cid2+" is "+cbits.length+"\n"); 

for(int i=0; i< cbits.length; i++) { 
cbits[i].setState(ConfigBit.RECONFIG); 

} 
myDevice.updateCLUConfig(cbits); 
myCluWin.updateDisplay(cbits); 

} 
else { 

System.out.print("Not able to access data for conf "+cid2+"\n"); 
logMessage("Could not find configuration data for C"+cid2+"\n"); 

} 
} 

setCurrentTime( (new Float(ev.getFinishTime())).toStringt) ); 
setTimeProgress(ev.getFinishTime() / mySchedule.getFinishTimef)); 

} 

void cmd_about() { 

String about[] = {" ", 
"DRIVE: Dynamically Reconfigurable-systems Interpretive-simulation a 

nd Visualization Environment", 
"Version 2.0", 
"Kiran Bondalapati", 
"University of Southern California", 
"Copyright (c) 1999." 

}; 
String buttons[] = {"OK"}; 

dialog = new MessageDialog(Drive.this,"About DRIVE",false,about,buttons,dh,dh); 
dialog.setLocation(200,200); 
dialog.show(); 



} 

class DialogHandler extends WindowAdapter implements ActionListener { 

public void windowClosingfWindowEvent e) { 
Drive.this.show(); 
dialog.dispose(); 

} 

public void actionPerformed(ActionEvent e) { 
Drive.this.show(); 
dialog.dispose(); 

} 
} 

/** Sets the label value for Function ID */ 
void setFuncId(String func) { 

funcIdLabel.setText(func); 
} 

/** Sets the label value for Function Name */ 
void setFuncName(String func) { 

funcNameLabel.setText(func); 
} 

/** Sets the label value for Configuration ID */ 
void setConfId(String conf) { 

confIdLabel.setText(conf); 
} 

/** Sets the label value for Configuration Name */ 
void setConfName(String conf) { 

confNameLabel.setText(conf); 
} 

/** Sets the label value for current time */ 
void setCurrentTime{String time) { 

timeCurrentLabel.setText(time); 
} 

/** Sets the label value for finish time */ 
void setFinishTime(String time) { 

timeFinishLabel.setText(time); 
} 

/** Updates the time progress bar */ 
void setTimeProgress(float percent) { 

timeProgress.setPercent(percent); 
} 

/** Resets the time texts and bar displays. 
*/ 

void resetTime() { 
setTimeProgress(0); 
if (mySchedule != null) { 

setFinishTime( (new Float(mySchedule.getFinishTime())).toString() ); 
} 
else 

setFinishTime("0.000") ; 
setCurrentTime("0.000"); 

} 

/** Displays error message. 



The first parameters denotes the severity of the error and can be used 
to filter messages. 
Second parameter is the error message. */ 

public void errorMessage(int level, String message) { 
logText.append("Error["+level+"]: "+message); 

} 

/** Displays log message. */ 
public void logMessage{String message) { 

logText.append(message); 
} 



/* 
* @(#)Application.Java 
* 

*/ 

import j ava.io.*; 
import java.util.*; 

* The class Application implements the Application Tasks and supports 
* read/write and other access functions. 
* 

* ©author Kiran Bondalapati 
* @see Hysam 
* ©see Configuration 
* @see Function 
*/ 

public class Application { 

private int id;        /* Id of the task */ 
private int type;      /* type of application tasks */ 
private int num_tasks;  /* Number of tasks in the list */ 
private int[] taskid;   /* Id number of the task read from input */ 
private int[] list;     /* List of function Ids or Iteration numbers */ 
private int[] precision;/* precision values for Precision problem */ 

/** Reads the application tasks as a linear sequence from the file 
handle. File has next value as the number of tasks. 
Returns 0 on error, #tasks on success */ 

public int readLinear(StreamTokenizer 1st) { 
int tok; 
try { 

tok = 1st.nextToken(); 
num_tasks = (int)1st.nval; 

taskid = new int[num_tasks]; 
list = new int [num_tasks] ,- 

for(int i=0; i<num_tasks; i++) { 
tok = 1st.nextToken(); 
taskid[i] = (int)1st.nval; 
tok = 1st.nextToken(); 
list[i] = (int)1st.nval; 

} 

System.out.print("Read Tasks: "+num_tasks+"\n"); 

return num_tasks; 

} catch (Exception IOException) { 
return 0; 

} 
} 

/** Reads the application tasks as precision curve from the file 
handle. File has next value as the number of tasks. 
Returns 0 on error, #tasks on success */ 

public int readPrecision(StreamTokenizer pst) { 
int tok; 
try { 

tok = pst.nextToken(); 
num_tasks = (int)pst.nval; 

list = new int[num_tasks]; 



precision = new int[num_tasks]; 

for(int i=0; i<num_tasks; i++) { 
tok = pst.nextToken(); 
list[i] = (int)pst.nval; 
tok = pst.nextToken(); 
precision[i] = (int)pst.nval; 

} 
return num_tasks; 

} catch (Exception IOException) { 
return 0; 

} 
} 

/** Returns number of tasks in the task list */ 
public int getNumTasks() { 

return num_tasks; 
} 

/** Returns the index'th element. Returns 0 on out of range index */ 
public int getFuncId(int index) { 

if ((0 <= index) && (index < num_tasks)) 
return list[index]; 

else 
return 0; 

} 



/* 
* @(#)Attributes.Java 

*/ 

import j ava.io.*; 

/ * • 

* The class Attributes contains the properties when one Function is 
* implemented in one configuration. 
* 
* ©author Kiran Bondalapati 
* @see Hysam 
* @see Configuration 
* @see Function 
*/ 

public class Attributes { 

private int numA; 
private Map[] attr; 

/** Constructor */ 
public Attributes(int num_attr) { 

numA = num_attr; 
//   attr = new Map[numA]; 

} 

public Attributes() { 
numA = 0; 

} 

/** Internal class which stores mapping of attributes for one function 
in one configurations. Attributes is an array of Maps */ 

private class Map { 
private int func_id; 
private int conf_id;        /* Id of the function */ 
private float extime; 
private int seqinp; 
private int parinp; 
private int[] precision; 

public int readData(StreamTokenizer ast) { 

try { 

int tok = ast .nextTokenO ; 
func_id = (int)ast.nval; 
tok = ast.nextToken(); 
conf_id = (int)ast.nval; 

System.out.print("\nReading Attr for func "); 
Systern.out.print(func_id); 
System.out.print(" config "); 
System.out.print(conf_id); 

tok = ast .nextTokenO ; 
extime = (float)ast.nval; 
tok = ast.nextToken(); 
seqinp = (int)ast.nval; 
tok = ast.nextToken(); 
parinp = (int)ast.nval; 

precision = new int[parinp]; 



for(int i=0; i<parinp; i++) { 
tok = ast.nextToken(); 
precision[i] = (int)ast.nval; 

} 
return 1,- 

} catch (Exception IOException) { 
return 0; 

} 
} 

/** Returns the Function Id */ 
public int getFuncIdO { 

return func_id; 
} 

/** Returns the Configuration Id */ 
public int getConfldO { 

return conf_id; 
} 

/** Returns the execution time */ 
public float getExTimeO { 

return extime; 
} 

} 

/** Initialize the number of attributes to num */ 
public int setNum(int num) { 

numA = num; 
return numA; 

} 

/** Returns the number of attributes stored in the matrix */ 
public int getNum() { 

return numA; 
} 

/** Reads the attributes data from the file */ 
public int readData(StreamTokenizer stream) { 

try { 

int tok = stream.nextToken(); 
numA = (int)stream.nval; 

attr = new Map[numA]; 

for(int i=0; i<numA; i++) { 
attrti] = new Map(); 
attr[i].readDatafstream); 

} 
return 1; 

} catch (Exception IOException) { 
return 0; 

} 
} 

/** Returns the execution time of a given function in a given configuration. 
Returns Hysam.INFINITY if there is no stored value */ 

public float getExecCost(int fid, int cid) { 

for(int i=0; i<numA; i++) { 
if ((attr[i].getFuncIdO == fid) && (attr[i].getConfldf) == cid)) { 



return attr[i] .getExTimeO ; 
} 

} 

return Hysam.INFINITY; 
} 



/* 
* @(#)CLU.Java 
* 

*/ 

import j ava.io.*; 

/ ** 
* The class CLU implements the CLU in the HySAM model. 
* Initialized with row and column sizes. The default size is 32 x 32. 
* Warning: Resizing the CLU results in loss of previous state as the 
* configuration matrix is reallocated and not copied. 
* 

* ©author Kiran Bondalapati 
* @see Hysam 
* @see Configuration 
* @see Function 
* @see Attributes 
* @see ConfigBit 
*/ 

public class CLU { 

private int status; 
private int rows; 
private int columns; 
private ConfigBit[][] config;  /* stores the config bits for the CLU */ 

/** Constructor which initializes the rows and columns and allocates 
the memory for the cells. */ 

public CLUfint r, int c) { 
rows = r; 
columns = c; 

config = new ConfigBit[r][c]; 

for(int i=0; i<rows; i++) { 
for(int j=0; j<columns; j++) { 

config[i][j] = new ConfigBit(i,j,0,ConfigBit.INIT); 
} 

} 

System, gc () ; 
} 

/** Constructor which initializes to the default rows and columns of 32. */ 
public CLU () { 

rows = 32; 
columns = 32; 

config = new ConfigBit [32] [32]; 

for(int i=0; i<rows; i++) { 
for(int j=0; j<columns; j++) { 

config[i][j] = new ConfigBit(i,j,0,ConfigBit.INIT); 
} 

} 

/** Initializes all the configuration bits of the CLU to 0 */ 
public void reset() { 

for (int i=0; i<rows; i++) 



for (int j=0; j<columns; j++) { 
config[i][j] = new ConfigBit(i,j,0,ConfigBit.INIT); 

} 
} 

/** Reads the configuration matrix from a file. 
The first two numbers in the file are the rows and columns. 
The remaining rows*columns numbers are the configuration bit 
values for each cell. They are formatted as per ConfigBit class. */ 

public int readData(StreamTokenizer bstream) { 

int tok; 

try { 
tok = bstream.nextTokenf); 
rows = (int)bstream.nval; 
tok = bstream.nextToken(); 
columns = (int)bstream.nval; 

config = new ConfigBit[rows][columns]; 

for(int i=0; i< rows; i++) { 
for(int j=0; j<columns; j++) { 
config[i][j] = new ConfigBit(); 
config[i][j].readData(bstream); 

} 
} 
return 1; 

} catch (Exception IOException) { 
return 0; 

} 
} 

/** Writes the configuration matrix to a file. (TO BE IMPLEMENTED). 
The first two numbers in the file are the rows and columns. 
The remaining rows*columns numbers are the configuration bit values 
and state for each cell */ 

public int writeDataO { 
try { 
return 1; 

} catch (Exception IOException) { 
return 0; 

} 
} 

/** Sets the number of rows and columns in CLU */ 
public void setSize(int row, int col) { 

rows = row ; 
columns = col; 

config = new ConfigBit[rows][columns]; 

} 

/** Returns the number of rows in CLU */ 
public int getRows() { 

return rows; 
} 

/** Returns the number of columns in CLU */ 
public int getCols () { 

return columns; 
} 



/** Sets configuration and state data of a CLU cell. 
Returns the previous configuration. 
If the row and column are out of range returns -1. */ 

public int setCellConfig(int row, int col, int cfg, int st) { 
if ((row <= rows) && (col <= columns)) { 

int tmp = config[row][col].getBit(); 
config[row][col].setValue(row,col,cfg,st); 
return tmp; 

} 
else 
return -1; 

} 

/** Returns configuration data of a CLU cell. 
Returns -1 for out of range cells. */ 

public int getCellConfig(int row, int col) { 
if ((row <= rows) && (col <= columns)) 
return config[row][col].getBit(); 

else 
return -1; 

} 

/** Sets configuration and state data of the complete CLU. */ 
public int updateConfig(ConfigBit[] cfg) { 

int num = cfg.length; 

for (int i=0; i<num; i++) { 
conf ig [cfg [i] .getRow() ] [cfg[i] .getColumnO ] .setValue(cfg[i] .getRowO , 

cfg[i] .getColumnO 
cfg[i] .getBitO , 
cfg[i] .getStateO 
); 

} 

return 1; 
} 

/** Returns the configuration data of the complete CLU. */ 
public Conf igBit [] [] getConfigO { 

return config; 
} 

/** Returns state data of a CLU cell. 
Returns -1 for out of range cells. */ 

public int getState(int row, int col) { 
if ((row <= rows) && (col <= columns)) 
return configfrow] [col] .getStateO ; 

else 
return -1; 

} 



/* 
* @(#)CLUWin.Java 
* 

*/ 

import j ava.io.* ; 
import java.awt.*; 

* The class CLUWin implements the CLU display in DRIVE. 
* Initialized with row and column sizes. The default size is 32 x 32. 
* 

* ©author Kiran Bondalapati 
* @see Drive 
* @see Device 
* ©see Hysam 
* @see Configuration 
* ©see ConfigBit 
*/ 

public class CLUWin extends Canvas { 

private int rows; 
private int columns; 

ConfigBit[][] config; 

/* Some colors for the CLU */ 

static final Color cluCellColor = Color.black; 
static final Color cluInitColor = Color.gray; 
static final Color cluActiveColor = Color.red; 
static final Color cluReconfColor = Color.green; 

/* The graphics constants */ 

private int width = 500; 
private int height = 420; 
static final int cell_size = 10; 
static final int cell_space = 2; 
static final int xoffset = 10; 
static final int yoffset = 10; 

private Graphics cluGraphics; 
private Image clulmage; 

/** Default constructor which has 32 rows and 32 columns. 
Initializes the cells to ConfigBit.INIT state. 

*/ 
public CLUWin() { 

rows = 32; 
columns = 32; 

config = new ConfigBit[rows][columns]; 

for(int i=0; i<rows; i++) { 
for (int j=0; j<columns; j++) { 

config[i][j] = new ConfigBit(i,j,0,ConfigBit.INIT); 
} 

} 

repaint(); 

} 



/** Constructor which initializes the number of rows and columns. 
@param rows integer number of rows 
@param cols integer number of columns 

*/ 
public CLUWin(int r, int c) { 

rows = r; 
columns = c; 

config = new ConfigBit[rows] [columns] ;: 

for(int i=0; i<rows; i++) { 
for (int j=0; j<columns; j++) { 

config[i][j] = new ConfigBit(i,j,0,ConfigBit.INIT); 
} 

} 

repaint(); 

} 

public void paint(Graphics g) { 

if (cluGraphics == null) { 
clulmage = createlmage(width, height); 
cluGraphics = clulmage.getGraphics(); 

} 

cluGraphics.clearRect(0,0,width, height); 

for(int i=0; i<rows; i++) { 
for(int j=0; j<columns; j++) { 

if (config[i][j].getStateO == ConfigBit.INIT) { 
cluGraphics.setColor(cluCellColor); 
cluGraphics.fillRect(i*(cell_size+cell_space)+yoffset, j*(cell_size+cell_space)+ 

xoffset, cell_size, cell_size); 

cluGraphics.setColor(cluInitColor); 
cluGraphics.drawRect(i*(cell_size+cell_space)+yoffset, j*(cell_size+cell_space)+ 

xoffset, cell_size, cell_size); 
} 
else if (config[i][j].getStateO == ConfigBit.ACTIVE) { 
cluGraphics.setColor(cluCellColor); 
cluGraphics.fillRect(i*(cell_size+cell_space)+yoffset, j*(cell_size+cell_space)+ 

xoffset, cell_size, cell_size); 

cluGraphics.setColor(cluActiveColor); 
cluGraphics.drawRect(i*(cell_size+cell_space)+yoffset, j*(cell_size+cell_space)+ 

xoffset, cell_size, cell_size); 
} 
else if (config[i][j].getStateO == ConfigBit.RECONFIG) { 
cluGraphics.setColor(cluCellColor); 
cluGraphics.fillRect(i*(cell_size+cell_space)+yoffset, j*(cell_size+cell_space)+ 

xoffset, cell_size, cell_size),- 

cluGraphics.setColor(cluReconfColor); 
cluGraphics.drawRect(i*(cell_size+cell_space)+yoffset, j*(cell_size+cell_space)+ 

xoffset, cell_size, cell_size); 
} 

} 
} 

cluGraphics.setColor(cluInitColor); 
cluGraphics.drawRect(23,403,cell_size, cell_size); 



cluGraphics.setColor(cluActiveColor); 
cluGraphics.drawRect(120,403,cell_size, cell_size); 

cluGraphics.setColor(cluReconfColor) ; 
cluGraphics.drawRect(220,403,cell_size, cell_size); 

cluGraphics.setColor(Color.black); 
cluGraphics.drawstring("Inactive", 45, 413); 
cluGraphics.drawstring("Active", 140, 413); 
cluGraphics.drawstring("Reconf", 240, 413); 

g.drawlmage(clulmage, 0, 0, null); 

} 

/** Sets the complete CLU display to the matrix of configuration info that 
is passed. 
@param cfg is a matrix of configurations for the full CLU. 

*/ 
public void setDisplay(ConfigBit[][] cfg) { 

config = cfg; 

repaint(); 
} 

/** Resets the display to nothing loaded. 
*/ 

public void reset() { 

config = new ConfigBit[rows][columns]; 

for(int i=0; i<rows; i++) { 
for (int j=0; j<columns; j++) { 

config[i][j] = new ConfigBit(i,j,0,ConfigBit.INIT); 
} 

} 

repaint(); 
} 

/** updates the CLU display with the new configuration information. 
Only the updated info is passed and previous cells retain the old 
configuration. 
@param cfg is an array of ConfigBit stream. 

*/ 
public void updateDisplay(ConfigBit[] cfg) { 

System.out.print("Updating display with "+cfg.length+" bits data\n"); 

for(int i=0; i<cfg.length; i++) { 
config[cfg[i] .getRowO ] [cfg[i] .getColumnO ] .setBit (cfg[i] .getBitO ) ; 
config[cfg[i] .getRowO ] [cfg[i] .getColumnO ] .setState (cfg[i] .getStatef)) ; 

} 

repaint(); 
} 

} 



/* 
* @(#)CacheBlock.Java 
* 
*/ 

import j ava.io.*; 

/ * * 
* The class CacheBlock implements one Configuration Cache unit. 
* Stores only meta information such as the configurations. The actual 
* configuration data can be fetched from the model to initialize the 
* CLU for a specific cache unit. 
* 
* ©author Kiran Bondalapati 
* @see Drive 
* @see Hysam 
* @see System 
* @see Configuration 
* @see Function 
*/ 

public class CacheBlock { 

private int confid; 

/** Constructor which initializes the CacheBlock with the configuration */ 
public CacheBlock(int cid) { 

confid = cid; 
} 

/** Constructor which initializes to the default NULL conf */ 
public CacheBlock () { 

confid = 0; 
} 



/' 
* ©(#)ConfigBit.Java 

import 3ava.10.' 

/' 
* The class ConfigBit implements the configuration bitstream of the CLU. 
* It encapsulates the configuration of one unit of the CLU which is one 
* cell on device. Can be used to store and transform hardware bitstreams. 

* ©author Kiran Bondalapati 
* ©version 2.0 1999 
* ©see Hysam 
* ©see Configuration 
*/ 

public class ConfigBit { 

static final int INIT = 0; 
static final int ACTIVE = 1; 
static final int RECONFIG = 2; 

/* Configuration in Initial state. * 
/* Currently in Active state */ 

/* Currently being reconfigured */ 

/ 

private int row; 
private int column; 
private int bit; 
private int state; 

/** Default constructor. */ 
public ConfigBit() { 
} 

/** Constructor to initialize the values for the bit. */ 
public ConfigBit(int r, int c, int b, int s) { 

row = r; 
column = c; 
bit = b; 
state =s; 

} 

/** Sets the value of the bit. */ 
public void setValuefint r, int c, int b, int s) { 

row = r; 
column = c; 
bit = b; 
state =s; 

} 

/** Reads the private variables of a ConfigBit. 
*  Returns 0 on error, 1 on success */ 

public int readData(StreamTokenizer cst) { 

try { 
int tok = cst.nextTokenO; 
row = (int)cst.nval; 
tok = cst.nextTokenO; 
column = (int)cst.nval; 
tok = cst.nextTokenO; 
bit = (int)cst.nval; 
tok = cst.nextTokenO; 
state = (int)cst.nval; 
return 1; 

} catch (Exception IOException) { 
return 0; 



} 

/** Returns row of bit */ 
public int getRowO { 

return row; 
} 

/** Returns column of bit */ 
public int getColumnO { 

return column; 
} 

/** Returns value of bit */ 
public int getBitO { 

return bit; 
} 

/** Returns state of bit */ 
public int getStateO { 

return state; 
} 

/** Sets the value of the bit. The value returned is the previous value, 
©param b is the bit value, 
©returns old value of bit. */ 

public int setBit(int b) { 
int temp = bit; 
bit = b; 
return temp; 

} 

/** Sets the state of bit */ 
public int setState(int s) { 

int temp = state; 
state = s; 
return temp; 

} 



/* 
* @(#)Configuration.Java 

*/ 

import j ava. i o. * ; 

* The class Configuration implements the Configuration in HySAM model. 
* 
* ©author Kiran Bondalapati 
* @see Hysam 
* @see ConfigBit 
* @see Function 
* @see Attributes 
* ©see Reconfiguration 
*/ 

public class Configuration { 

private int id;      /* Id of the function */ 
private String name;  /* Name for storage/display purpose */ 
private int numbits;  /* Number of cells for which configuration data is 

stored in the configuration file */ 
private ConfigBit[] cbits; /* The bits which store the information */ 

public Configurationf) { 
id =0; 
name =""; 
numbits = 0; 

} 

public Configuration(int cid. String cname, int nbits, ConfigBit[] config) { 

id = cid; 
name = cname; 
numbits = nbits; 

if (numbits > 0) { 
cbits = new ConfigBit[numbits]; 

for(int i=0; i<numbits; i++) { 
cbitsfi] = new ConfigBit(config[i].getRowf), config[i].getColumn(), config[i].getB 

it(), config[i] .getStateO ) ; 

} 
} 

} 

/** Reads the private variables of a Configuration from file. 
Opens the input file if specified and reads the configuration data into 
cbits (of type ConfigBits). 
Returns 0 on error, 1 on success. 
Returns 2 on problem reading config data, numbits is reset in this case*/ 

public int readData(StreamTokenizer fstream) { 

try { 
int token = fstream.nextToken(); 
id = (int)fstream.nval; 
token = fstream.nextTokenf); 
name = (String)fstream.sval; 
token = fstream.nextToken(); 
numbits = (int)fstream.nval; 



e+"\n") 

e+"\n") 

if (numbits > 0) { 

/* make sure this directory character doesnt break filename */ 

fstream.wordChars('/','/'); 

token = fstream.nextToken(); 
String cfilename = (String)fstream.sval; 

try { 
StreamTokenizer cstream = new StreamTokenizer(new FileReader(cfilename)); 

cstream.commentChar('#'); 
cstream.eollsSignificant(false); 

System.out.print("Reading "+numbits+" bits configuration info from: "+cfilenam 

/* The file also has row and column numbers. Discard them ?? */ 
token = cstream.nextToken(); 
token = cstream.nextToken(); 

/* The number in file is assumed to be more accurate */ 

token = cstream.nextToken(); 
numbits = (int)cstream.nval; 

System.out.print("Reading "+numbits+" bits configuration info from: "+cfilenam 

cbits = new ConfigBit[numbits]; 

for (int i=0; i < numbits; i++) { 
cbits[i] = new ConfigBit(); 
cbits[i].readData(cstream); 

} 
} catch (Exception IOException) { 

numbits = 0; 
return 2; 

} 

} 
return 1; 

} catch (Exception IOException) 
return 0; 

} 
} 

{ 

/** Returns name of configuration */ 
public String getName() { 

return name; 
} 

/** Returns Id of configuration */ 
public int getldf) { 

return id; 
} 

/** Returns the number of bits of config data available */ 
public int getNumbits() { 

return numbits; 
} 



/** Returns the ConfigBits data which stores the configuration */ 
public ConfigBit[] getConfigO { 

System.out.print("Constructing configuration data for "+name+" C"+id+" with "+numbits+ 
" bits\n"); 

ConfigBit[] temp = new ConfigBit[numbits]; 
for(int i=0; i< numbits; i++) { 

tempti] = new Conf igBit (cbits[i] .getRowO ,cbits[i] .getColumnO , 
cbits[i] .getBitO , cbits[i] .getStateO 
); 

} 
return temp; 

} 



import j ava.i o.*; 

/ ** 

* Device.Java 
* 
* The system component of the framework. This maintains the various 
* components of the system and their state. These components consists of the 
* CLU, the Cache, etc. To be extended to the interconnection network, 
* memory etc. in future upgrades and versions. 
* 

* ©author Kiran Bondalapati 
* ©version 2.0 1999 
* ©see Function 
* ©see Configuration 
* ©see Attributes 
* ©see Reconfiguration 
* ©see Scheduler 
* ©see EventList 
* ©see Event 
*/ 

public class Device { 

private CacheBlock[] cCache; 
private int cacheSize; 

private CLU myCLU; 

/** Constructor */ 
public Device() { 

myCLU = new CLU(); 
int cacheSize = 0; 

} 

/** Reads the parameters??? Currently not used */ 
public int readParams(StreamTokenizer pstream) { 

return 1; 
} 

/** Initializes all the configuration bits of the CLU to 0 */ 
public void resetCLUO { 
myCLU.reset (); 

} 

/** Reads the CLU configuration matrix from a file. 
The first two numbers in the file are the rows and columns. 
The remaining rows*columns numbers are the configuration bit 
values for each cell. They are formatted as per ConfigBit class. */ 

public int readCLUData(StreamTokenizer bstream) { 

return myCLU.readData(bstream); 
} 

/** Writes the CLU configuration matrix to a file. (TO BE IMPLEMENTED). 
The first two numbers in the file are the rows and columns. 
The remaining rows*columns numbers are the configuration bit values 
and state for each cell */ 

public int writeCLUData() { 
return myCLU.writeDataf); 

} 

/** Sets the number of rows and columns in CLU */ 
public void setCLUSize(int row, int col) { 
myCLU = new CLU(row,col); 



} 

/** Returns the number of rows in CLU */ 
public int getCLURows() { 

return myCLU.getRows(); 
} 

/** Returns the number of columns in CLU */ 
public int getCLUColsO { 

return myCLU.getCols(); 
} 

/** Sets configuration and state data of a CLU cell. 
Returns the previous configuration. 
If the row and column are out of range returns -1. */ 

public int setCLUCellConfig(int row, int col, int cfg, int st) { 
return myCLU.setCellConfig(row,col,cfg,st); 

} 

/** Returns configuration data of a CLU cell. 
Returns -1 for out of range cells. */ 

public int getCLUCellConfig(int row, int col) { 
return myCLU.getCellConfig(row,col); 

} 

/** Sets configuration and state data of the CLU. 
The input is an array ConfigBit[] and the number of data points. 

public int updateCLUConfig(ConfigBit[] cfg) { 
return myCLU.updateConfig(cfg); 

} 

/** Returns configuration data of the complete CLU. */ 
public ConfigBit[][] getCLUConfig() { 

return myCLU.getConfig(); 
} 

/** Returns state data of a CLU cell. 
Returns -1 for out of range cells. */ 

public int getCLUCellState(int row, int col) { 
return myCLU.getState(row,col); 

} 



/ ** 

* The class Event is used to as a placeholder for events. 
* WARNING: Internal class only. Do not extend! 
* It has to be synchronized with the EventList in all versions!! 
* It is mainly used to transfer events between modules. 
* The methods are also duplicates of EventList without the wrappers. 
* 
* ©author Kiran Bondalapati 
* @see Hysam 
* @see Configuration 
* @see Function 
* @see Scheduler 
* @see EventList 
*/ 

public class Event { 

private int type; 
private float start_time; 
private float fin_time;     /* The finish time of the event */ 

private int id_one;       /* The semantics of the ids depend on type */ 
private int id_two; 

/** Constructor that initializes the Event */ 
public Event() { 
} 

/** Constructor that initializes the Event */ 
public Event(int t, float stime, float ftime, int idl, int id2) { 

type = t; 
start_time = stime; 
fin_time = ftime; 
id_one = idl; 
id_two = id2 ; 

} 

/** Gets the type of the event */ 
public int getType() { 

return type; 
} 

/** Gets the start time of the event */ 
public float getStartTime() { 

return start_time; 
} 

/** Gets the Finish Time of the event */ 
public float getFinishTime() { 

return fin_time; 
} 

/** Gets the first id of the event */ 
public int getldlO { 

return id_one; 
} 

/** Gets the second id of the event */ 
public int getld2() { 

return id_two; 
} 

} 



/* 
* @(#)EventList.Java 
* 

*/ 

import java.util.* ; 

* The class EventList is used to maintain a vector of events. Dynamically 
* adapts size using Java.lang.Vector class. Is mainly used by the scheduler 
* to maintain the eventlist. 
* 

* ©author Kiran Bondalapati 
* @see Hysam 
* ©see Configuration 
* ©see Function 
* ©see Scheduler 
* ©see Event 
*/ 

public class EventList { 

private int num_events;  /* number of events in the list */ 
private Vector type;     /* type of the event currently EXECUTE = 1 

and RECONFIG = 2 */ 
private Vector start_time;    /* The starting time of the event */ 
private Vector fin_time;     /* The finish time of the event */ 

private Vector id_one;       /* The semantics of the ids depend on type */ 
private Vector id_two; 

/** Constructor that initializes the EventList */ 
public EventList() { 

num_events = 0; 

type = new Vector(); 
start_time = new Vector(); 
fin_time = new Vector(); 
id_one = new Vector(); 
id_two = new Vector(); 

System.out.print("Constructer called\n"); 

} 

/** Adds an event at the end to the EventList. The semantics of idl and id2 
parameters are based on the event type */ 

public int addEventfint event_type, int idl, int id2, float s_time, 
float f_time) { 

type.insertElementAt(new Integer(event_type), num_events); 
id_one.insertElementAt(new Integer(idl), num_events); 
id_two.insertElementAt(new Integer(id2), num_events); 
start_time.insertElementAt(new Float(s_time), num_events); 
fin_time.insertElementAt(new Float(f_time), num_events); 

num_event s++; 

return 1; 
} 

/** Gets the type of the index'th event */ 
public int getType(int ind) { 

return ((Integer) type.elementAt(ind)).intValue(); 
} 



/** Gets the start time of the index'th event */ 
public float getStartTime(int ind) { 

return ((Float)start_time.elementAt(ind)).floatValue(); 

} 

/** Gets the Finish Time of the index'th event */ 
public float getFinishTime(int ind) { 

return ((Float)fin_time.elementAt(ind)).floatValuef); 

} 

/** Gets the first id of the index'th event */ 
public int getldlfint ind) { 

return ((Integer)id_one.elementAt(ind)).intValueO; 

} 

/** Gets the second id of the index'th event */ 
public int getld2(int ind) { 

return ((Integer)id_two.elementAt(ind)).intValue(); 
} 

/** Constructs and returns an Event node */ 
public Event getEventtint ind) { 

if (ind > num_events) { 
return null; 

} 
else { 

return (new Event(getType(ind), getStartTime(ind), getFinishTime(ind), getldl(ind), 
getld2(ind))); 

} 
} 



* @(#)Function.Java 
* 

*/ 

import j ava. io.*; 

/ ** 
* The class Function implements the Function in HySAM model. 
* 
* ©author Kiran Bondalapati 
* ©see Hysam 
* ©see Configuration 
* ©see Attributes 
*/ 

public class Function { 

private int id;        /* Id of the function */ 
private String name;  /* Name for storage/display purpose */ 

/** Constructor intializes the data of the Function */ 
public Function() { 

id = 0; 
name = 

} 

_  li ii . 

/** Reads the private variables of a Function from Datalnput argument. 
*  Returns 0 on error, 1 on success */ 

public int readData(StreamTokenizer fstream) { 

System.out.print("Reading a fn data\n"); 

try { 

int token = fstream.nextToken(); 
id = (int) fstream.nval,• 

System.out.print("id = "); 
System.out.print(id); 
System.out.print("\n"); 

token = fstream.nextTokenf) ; 
name = (String) fstream.sval; 

System.out.print(" name = "); 
System.out.print(name); 
System.out.print("\n"); 

return 1; 
} catch (Exception IOException) { 

System.out.print("Read Error in Function\n"); 
return 0; 

} 
} 

/** Returns name of function */ 
public String getNameO { 

return name; 
} 

/** Returns Id of function */ 
public int getld() { 



/** HySAM : Hybrid System Architecture Model */ 

import java.io.*; 

/** 
* Hysam : Hybrid System Architecture Model. 
* 
* The main class which describes and implements the model. Contains the 
* various components of the hybrid system architecture. 
* The components are the CPU, CLU, Configuration Cache, Interconnection 
* Network. 
* The components of the model are described by the Functions, Configurations, 
* Attributes, Reconfiguration, etc. 
* 
* ©author Kiran Bondalapati 
* ©version 2.0 1999 
* ©see Function 
* ©see Configuration 
* ©see Attributes 
* ©see Reconfiguration 
* ©see Scheduler 
* ©see EventList 
* ©see Event 
*/ 

public class Hysam { 

static final int INFINITY = 1000000000; /* Some large number */ 
private int numRows; 
private int numCols; 
private int numF; 
private int numC; 
private int numA; 
private int numT; 
private int numR; 

private Function[] F; 
private Configuration[] C; 
private Attributes A; 
private Application T; 
private Reconfiguration R; 

/** Constructor */ 
public void Hysam() { 
} 

/** Reads the model parameters by calling the readData functions of each 
of the components. */ 

public int readParams(StreamTokenizer pstream) { 

int res = 0; 
int i, j ; 

System.out.print("Reading Data\n"); 

/* force garbage collection just to make sure we have max memory */ 
System.gcO ; 

try { 
int token = pstream.nextToken(); 

numF = (int)pstream.nval; 

System.out.print("Read functions = "); 



System.out.print(numF); 
System.out.print(n\n"); 

F = new Function[numF]; 

for (i=0; i<numF; i++) { 

F[i] = new Function(),• 
System.out.print("Reading function "); 
System.out.print(i); 
System.out.print("\n"); 

res = (F[i]).readData(pstream); 

System.out.print("res ="); 
System.out.print(res); 
System.out.print("\n"); 

} 

System.out.print("Finished\n"); 

token = pstream.nextToken(); 

numC = (int)pstream.nval; 
numC = numC +1; /** CO is a dummy configuration **/ 
C = new Configuration[numC]; 

/* Set up some initial configuration pattern here in the config 
and pass it to the CO configuration */ 

ConfigBit[] cbits = new ConfigBit[numRows*numCols]; 

for (i=0; i<numRows; i++) { 
for (j=0; j<numCols; j++) { 

cbits[i] = new ConfigBit(i,j,0, ConfigBit.INIT); 
} 

} 

C[0] = new Configuration^, "Initial", numRows*numCols, cbits); 

for (i=l; i<numC; i++) { 
C[i] = new Configuration(); 
res = C[i].readData(pstream); 

} 

System.out.print("Read configurations ="); 
System.out.print(numC); 
System.out.print("\n"); 

A = new Attributes(); 
res = A.readData(pstream); 

System.out.print("Read Attributes ="); 
System.out.print(A.getNum()); 
System.out.print("\n"); 

R = new Reconfiguration(); 
res = R.readData(pstream); 

return res; 
} catch (Exception IOException) { 
return 0; 

} 



} 

/** Reads the application data from a file. The type of data read is based 
on the type parameter. Currently 1 Linear, 2 Precision */ 

public int readAppKint type, StreamTokenizer astream) { 

int res = 0; 

if (type == 1) { 
T = new Application(); 
res = T.readLinear(astream) ; 

} 

return res; 
} 

/** Computes the schedule using various algorithms based on the type 
of application input */ 

public Scheduler computeSchedule(int type) { 
Scheduler S = new Scheduler(); 

if (type == 1) { 
int res = S.Linear(numF, F, numC, C, A, R, T) ,- 
if (res > 0) 
return S; 

else 
return null; 

} else if (type == 2) { 
} 

return null; 
} 

/** Gets the name of a function. 
@param functionID 
©returns functionName or "X" if Id not found 

*/ 
public String getFuncName(int fid) { 

for (int i=0; i<numF; i++) { 
if (F[i] .getldO == fid) { 
return F[i].getName(); 

} 
} 
return "X"; 

} 

/** Gets the name of a configuration, 
©param configuration ID 
©returns configurationName or "Y" if Id not found 

*/ 
public String getConfName(int cid) { 

for (int i=0; i<numC; i++) { 
if (C[i] .getldO == cid) { 
return C[i].getName(); 

} 
} 
return "Y"; 

} 

/** Gets the configuration data for a configuration, 
©param configuration ID 
©returns configuration data as ConfigBit[] 



*/ 
public ConfigBit[] getConfig(int cid) { 

for (int i=0; i<numC; i++) { 
if (Cti] .getldO == cid) { 
System.out.print("Found configuration "+cid+"\n"); 
return C[i].getConfig(); 

} 
} 
System.out.print("Did not find configuration "+cid+"\n"); 
return null; 

} 



import j ava.awt.*; 
import j ava.awt.event.*; 

public class MessageDialog extends Dialog { 

public MessageDialog(Frame parent,String title,boolean modal,String text[]. 
String buttonsU, WindowListener wh, ActionListener bh) { 

super(parent,title,modal); 

int textLines = text.length; 
int numButtons = buttons.length; 
Panel textPanel = new Panel(); 
Panel buttonPanel = new Panel(); 
textPanel.setLayout(new GridLayout(textLines,1)); 

for(int i=0;i<textLines;++i) textPanel.add(new Label(text[i])); 

for(int i=0;i<numButtons;++i){ 
Button b = new Button(buttons[i]); 
b.addActionListener(bh); 
buttonPanel.add(b); 

} 
add("North",textPanel); 
add("South",buttonPanel); 
setBackground(Color.lightGray); 
setForeground(Color.black) ; 
pack(); 
addWindowListener(wh) ,- 

} 
} 



import j ava.awt.*; 
import j ava.awt.event.*; 

public class MyMenu extends Menu { 

public MyMenufObject labels[],ActionListener al,ItemListener il) { 

super((String)labels[0]); 
String menuName = (String) labels[0]; 
char firstMenuChar = menuName.charAt(0); 

if(firstMenuChar == '-' || firstMenuChar =='!'){ 
setLabel(menuName.substring(1)); 
if(firstMenuChar == '-') setEnabled(false); 

} 

for(int i=l;i<labels.length;++i) { 
if(labels[i] instanceof String){ 

if("-".equals(labels[i])) addSeparator(); 
else{ 

String label = (String)labels[i]; 
char firstChar = label.charAt(0); 
switch(firstChar){ 
case '+': . 
CheckboxMenuItem checkboxltem = new CheckboxMenuItem(label.substring(1)) ; 
checkboxltem.setstate(true); 
add(checkboxltem); 
checkboxltem.addltemListener(il); 
break; 

case '#': 
checkboxltem = new CheckboxMenuItem(label.substring(1)); 
checkboxltem.setState(true); 
checkboxltem.setEnabled(false); 
add(checkboxltem); 
checkboxltem.addltemListener(il); 
break; 

case '-': 
checkboxltem = new CheckboxMenuItem(label.substring(1)); 
checkboxltem.setState(false); 
add(checkboxltem); 
checkboxltem.addltemListener(il); 
break; 

case '=': 
checkboxltem = new CheckboxMenuItem(label.substring(1)); 
checkboxltem.setState(false); 
checkboxltem.setEnabled(false); 
add(checkboxltem); 
checkboxltem.addltemListener(il); 
break; 

case '-': 
Menultem menultem = new Menultem(label.substring(1)); 
menultem.setEnabled(false); 
add(menultem); 
menultem.addActionListener(al); 
break; 

case ' ! ' : 
menultem = new Menultem(label.substring(1)); 
add(menultem); 
menultem.addActionListener(al); 
break; 

default: 
menultem = new Menultem(label); 
add(menultem); 



menuItem.addActionListener(al); 
} 

} 
}else{ 
add(new MyMenuf(Object[])labels[i],al,il)); 

} 
} 
} 
public Menultem getltem(String menultem) { 

int numltems = getltemCount(); 
for(int i=0;i<numltems;++i) 
if(menultem.equals(getltem(i).getLabeK))) return getltem(i); 

return null; 
} 

} 



import j ava. awt. * ,- 
import j ava. awt. event .*,- 

public class MyMenuBar extends MenuBar { 
public MyMenuBar(Object labels[][],ActionListener al, ItemListener il) { 

super(); 
for(int i=0;i<labels.length;++i) 
add(new MyMenu(labels[i],al,il)); 

} 
public MyMenu getMenu(String menuName) { 

int numMenus = getMenuCount(); 
for(int i=0;i<numMenus;++i) 
if(menuName.equals(getMenu(i).getLabelO)) returnf(MyMenu)getMenu(i)); 

return null; 
} 

} 



import j ava.awt.*; 

* ProgressBar: A canvas widget to display the progress of some task. 
* It is similar to the Swing progressbar widget but is much simpler currently. 
* 
* Can be extended to display percent value as String. 
* ©author Kiran Bondalapati 
*/ 

public class ProgressBar extends Canvas { 

int x, y, width, height; 
float percent; 

static final int borderWidth = 2 ; 

Graphics graphics; 
Image image; 

Color barColor = Color.blue; 
Color textColor = Color.white; 
Color backColor = new Color(50,50,50) ; 
Color borderColor = new Color(200,10,10); 

/** Default constructor. 
Initializes width and height to 100 and 20 and percent to 0 */ 

public ProgressBar() { 
x =0; 
y = 0; 
width = 100; 
height =20; 
setSize(100,20) ; 
percent = 0; 

repaint(); 
} 

/** Parameterized Constructor. 
Sets the values for the bar */ 

public ProgressBar(int xpos, int ypos, int w, int h) { 
x = xpos; 
y = ypos; 
width = w; 
height = h; 
setSize(width,height); 
percent = 0; 

repaint(); 
} 

/ ** 

* Paint the ProgressBar bar. 
*/ 

public void paint(Graphics g) { 
if (graphics == null) { 

image = createlmage(width, height); 
graphics = image.getGraphics(); 

} 

int left = (int)((float)(width) * percent) 
int right = width; 

// System.out.print("Time "+percent+"% left "+left+" right "+right+"\n"); 



graphics.setColor(borderColor) ; 
graphics.drawRect(0, 0, width, height); 

if (left > 0) { 
graphics.setColor(barColor); 
graphics.fillRect(0, borderWidth,left, height -borderWidth); 

} 

if (right > 0) { 
graphics.setColor(backColor); 
graphics. fillRect (left, borderWidth, right, height - borderWidth); 

} 

graphics.setColor(textColor); 
graphics.drawstring((new Integer((int)(percent*100))).toString()+"%", width/2 - 20, he 

ight-3); 

g.drawlmage(image, 0, 0, nul1); 

} 

/** Set the various colors for the bar */ 
public void setColors(Color bar, Color back, Color border) { 

barColor = bar; 
backColor = back; 
borderColor = border; 
repaint(); 

} 

/** Sets the percent value of the bar and redraws it. */ 
public void setPercent(float per) { 

percent = per; 
repaint(); 

} 



/* 
* @(#)Reconfiguration.Java 
* 

*/ 

import j ava.io.*; 

* The class Reconfiguration contains the cost of chaging configurations 
* 
* ©author Kiran Bondalapati 
* ©see Hysam 
* ©see Configuration 
* ©see Function 
*/ 

public class Reconfiguration { 

private int numR; '/* the number of data pairs stored */ 
private int[] from_cid; /* source configuration id */ 
private int[] to_cid; /* target configuration id */ 
private float[] cost; /* reconfiguration cost */ 
private int partial; /* not used currently */ 

public int readData(StreamTokenizer rst) { 

int tok; 

try { 
tok = rst.nextTokenO; 
numR = (int)rst.nval; 

from_cid = new int[numR]; 
to_cid = new int[numR]; 
cost = new float[numR]; 

for(int i=0; i<numR; i++) { 
tok = rst.nextToken(); 
from_cid[i] = (int) rst .nval,- 
tok = rst.nextToken(); 
to_cid[i] = (int)rst.nval; 
tok = rst.nextTokenO; 
cost[i] = (float)rst.nval; 

} 
return 1; 

} catch (Exception IOException) { 
return 0; 

} 
} 

/** Returns the Source configuration Id at [ind] */ 
public int getFromId(int ind) { 

return from_cid[ind]; 
} 

/** Returns the target Configuration Id at [ind] */ 
public int getToId(int ind) { 

return to_cid[ind]; 
} 

/** Returns the cost of reconfiguration between two configurations. 
If the pair does not exist then Hysam.INFINITY is returned */ 

public float getReconfCost(int frmid, int toid) { 



for(int i=0; i<numR; i++) { 
if ((from_cid[i] == frmid) && (to_cid[i] == toid)) { 
return cost[i]; 

} 
} 

return Hysam.INFINITY; 
} 



/* 
* ©(#)Scheduler.Java 

*/ 

import j ava.io.*; 

* Scheduler 
* 
* This class incorporates the scheduling components of the DRIVE framework. 
* Various scheduling algorithm routines are available in this class. 
* This class interacts dynamically with the other classes by providing 
* mechanisms to query current event and compute the next scheduled event. 
* These mechanisms facilitate dynamic scheduling algorithms. 
* 
* ©author Kiran Bondalapati 
* ©version 2.0 1999 
* ©see Hysam 
* ©see ConfigBit 
* ©see Function 
* ©see Attributes 
* ©see Reconfiguration 
*/ 

public class Scheduler { 

static final int EXECUTE  = 1; 
static final int RECONFIG = 2; 

private int computed = 0; 
private int numEvents; 
private int currEvent = -1; 

private EventList list; 

private float[][] matrix; 

public void Scheduler() { 

computed = 0; 
numEvents = 0; 
currEvent = -1; 

list = new EventList(); 

} 

/** Resets the schedule to the beginning of the event list. 
If schedule has not been computed returns 0. 
Returns 1 on success. */ 

public int reset() { 
if (computed ==1) { 
currEvent = -1; 
return 1; 

} 
else 

return 0; 
} 

/** Returns the next event in the schedule */ 
public Event getNextEvent() { 

if (computed ==1) { 
currEvent++; 



if (currEvent == numEvents) { 
currEvent = -1; 
return null; 

} else { 
return list.getEvent(currEvent); 

} 
} 

return null; 

} 

/** Returns the current event in the schedule */ 
public Event getCurrentEvent() { 

if (computed ==1) { 
if ((currEvent > -1) && (currEvent < numEvents)) { 
return list.getEvent(currEvent); 

} else { 
return null; 

} 
} 
return null; 

} 

/** Returns the finish time of schedule. 
If the schedule is a static schedule then the finishing time of the 
schedule can be extracted for display purposes. */ 

public float getFinishTimeO { 
if (computed ==1) { 
return list.getFinishTime(numEvents -1); 

} 
return 0; 

} 

/** Computes the schedule for a linear dependent list of tasks. 
Uses dynamic programming to compute the matrix of execution timings. */ 

public int Linearfint numF, Function[] F, int numC, Configuration[] C, Attributes A, Rec 
onfiguration R, Application T) { 

int i, j , le- 
int numT = T.getNumTasks(); 

matrix = new float[numT][numC]; 

int[][] Sol = new int[numT][numC]; 

System.out.print("\nlnitializing\n"); 

/* First initialize everything to INFINITY */ 
for(i=0; i<numT; i++) { 

for(j=0; j<numC; j++) { 
matrix[i][j] = Hysam.INFINITY; 

} 
} 

System.out.print("First Step\n"); 

for(j=0; j<numC; j++) { 

matrix[0][j] = A.getExecCost(T.getFuncId(O), C[j].getld()) + 
R.getReconfCost(0,C[j].getld()); 

Sol[0][j] = 0; 



System.out.print("Cost ["+j + "] is "+matrix[0][j]+"\n"); 

} 

for(i=l; i<numT; i++) { 

System.out.print("Step "+i+"\n"); 

for(j=0; j<numC; j++) { 

int mink =0; 
for(k=0; k<numC; k++) { 

if (matrix[i-l][k] + R.getReconfCost(C[k].getld(),C[j].getld()) < matrix[i-1][mi 
nk] + R.getReconfCost (C[mink] .getldO ,C[j]-getldO ) ) { 

mink = k; 
} 

} 

Sol[i][j] = mink; 
matrix[i][j] = A.getExecCost(T.getFuncId(i), C[j].getldO) + matrix[i-1][mink] +R 

.getReconfCost(C[mink] .getldO ,C[j] .getldO ) ; 

System.out.print("Cost ["+i+" "+j+"] is "+matrix[i][j]+"\n"); 

} 
} 

int minj = 1; 

for(j=0; j<numC; j++) { 

System.out.printC'Cost of ["+j+"] is "+matrix[numT-1][j]+"\n"); 
if (matrix[numT-1][j] < matrix[numT-1][minj] ) 
minj = j ; 

} 

int cnum = minj; 

System.out.print ("Minimum cost found ending in conf ") ,- 
System.out.print(C[minj].getld()+" cost "+matrix[numT-1][minj]+"\n"); 

/* reverse the Sol matrix first to obtain an ordered list */ 

int prev; 
int next = -1; 

for(i=numT-l; i> -1; i—) { 
prev = Sol[i] [cnum] ; 
Sol[i][cnum] = next; 
next = cnum; 
cnum = prev; 

} 

cnum = next;    /* the first configuration */ 

list = new EventListO; 

float s_time, f_time; 

f_time = 0; 
int curr = C[0] .getldO ; 
int to_cid; 



for(i=0; i<numT; i++) { 

to_cid = C[cnum].getld(); 

s_time = f_time; 
f_time = s_time + R.getReconfCost(curr, to_cid); 

list.addEvent(RECONFIG, curr, to_cid, s_time, f_time); 
numEvents++; 

System.out.print("Reconf "+curr+" "+to_cid+" Time "+s_time+" to "+f_time+"\n"); 

s_time = f_time; 
f_time = s_time + A.getExecCost(T.getFuncId(i), C[cnum].getldf)); 

list.addEvent(EXECUTE, T.getFuncId(i), to_cid, s_time, f_time); 
numEvents++; 

System.out.print("Execute "+T.getFuncId(i)+" "+to_cid+" Time "+s_time+" to "+f_time+ 
"\n"); 

curr = to_cid; 
cnum = Sol[i][cnum]; 

} 

computed = 1; 

return 1; 

} 

} 



Project MAARC 
Models, Algorithms and Architectures for Reconfigurable Computing 

http://maarc.usc.edu 

Viktor K. Prasanna 

University of Southern California 

Krishna Palem 

New York University 

Annual Review Meeting, August 1999 

Project MAARC 
MAARC 

3 year effort 
USC and NYU 
Project start date: September 10, 1996 



Annual Review Outline 
MAARC 

USC Efforts 
- Project Overview 15' 
- Year 3 Key Technical Accomplishments 

• Problem-Instance Dependent Mapping (R.P.S. Sidhu) 20' 

• Dynamic Logic Synthesis for Reconfigurable HW (A. Dandalis) 20' 

Break 15' 

• HySAM Model and Dynamic Precision Management (K. Bondalapati) 30' 

• An Interpretive Simulation and Visualization Environment for Dynamically 
Reconfigurable Architectures (DRIVE): 
Overview and Demo (K. Bondalapati) 20' 

Break 15' 

NYU Efforts eo- 

Discussion is1 

Project Overview Outline 
MAARC 

Background 
- State of technology and theory 

- Traditional design approach 

Overall Goals and Approach 
- MAARC objectives 
- Our approach to configurable computing 

USC Key Research Areas Summary - YR 3 
Project Status 



Traditional Design Approach 
MAARC 

Application 
Developer 

Library of 
H  Modules 

VHDL 
VerilQQ 

. Technology 
i Independent 

High-level 
Synthesis 

RT/gate-level 
Network 

Analysis     [_ 
(Area/Timing) 

^E 
Logic 

Synthesis 
j Nettist 

Partitioning, 
Place/Routina 

ri}>tOK 

Technology 
Dependent 

Rl Devices 

?    Key Features of Traditional Approach 
MAARC 

Many abstraction layers 
Non-interactive algorithms 
Static configuration control 

Compile 

Load file 
onto Hardware 



MAARC Objectives 
MAARC 

Scalable algorithms and performance analysis 

Power of dynamic reconfiguration [logic and connections] 

Configurable computing, 
FPGA computing 

(static) 
O TRULY dynamic 

configurable computing 

Run-time mapping 
Dynamic reconfiguration 

Models [computational, compilation] 

Tools using 
VHDL synthesis 

Tools using 
Models 

A-EPIC & compiler (NYU) 
DRIVE (USC) 

Dynamic Reconfiguration (Our view) 
MAARC 

Set configuratio 

Compute 

Data dependent reconfiguration 
Frequent reconfiguration 

Distributed control 

Configure logic 

Configure connections } at runtime 

Reconfiguration cost ? 
Performance predictability ? 

Dynamic precision adaptation ? 



Our Approach 
MAARC 

Computational Model 
Compilation Model 

Application 
Developer 

Models 

Optimized hardware 
_>   architectures/algorithms 

for generic problems 
and applications 

Devices Architectures 

Our Reconfigurable Mesh Model' 
MAARC 

A model for understanding dynamic configuration 

- NxN mesh of processing elements 

- Processing Element 

• Configurable logic 

• Configurable switches 

Synchronous Model 

Communication Cost 

- Constant delay 

- Log delay 

Abstract Model 

* MIT Advanced Research in VLSI, 1988 



££              Reconfigurable Meshes: 
f£             Dynamic Reconfiguration        MAARC 

Computation (e.g. Program) 

1     1          Problem Instance (e.g. Input Data) 

Reconfigurable 
Mesh Model 

i '    1 

Intermediate 
Results 

. Instance Based 
Configuration 

T 

Computation and 
Reconfiguration 

Result 

1 

r 

10 

B Our HySAM Model: 
Scheduled Reconfiguration       MAARC 

Computation (e.g. Program) 

I 
Hybrid System 

Architecture Model 

i 
f »roblem Instance (e.g. Input Data) 

Configurations 
and Schedule 

•< r    1 
Intermediate 

Results 
Computation and 
Reconfiguration 

Result 

1 

11 



Advantages of Our Approach 
 MAARC 

Algorithmic design methodology 
Application developer "sees" the device and 
architectural features in the algorithm design 
phase 
Runtime interaction between algorithm and 
hardware 
Better exploitation of dynamic reconfiguration 
Scalable algorithm development 

12 

USC Team Members 
MAARC 

Faculty 
- Viktor Prasanna (PI) 

Students 
- Kiran Bondalapati 

- Seonil Choi 
- Andreas Dandalis 
- Reetinder Sidhu 

13 



Research Accomplishments Summary 
MAARC 

(Conference Publications) 

10 

K. Bondalapati, V. K. Prasanna, and P. loannou. "Managing Dynamic Precision on Reconfigurable Hardware". High- 
Performance Embedded Computing, September 1999 
A. Dandalis, J. L. Gaudiot, and V. K. Prasanna, "Run-time Mapping of Graph-Problem Instances onto Reconfigurable 
Hardware". Military and Aerospace Applications of Programmable Devices and Technologies. September 1999. 
K. Bondalapati. G. Papavassilopoulos, and V. K. Prasanna, "Mapping Applications onto Reconfigurable Architectures using 
Dynamic Programming", Military and Aerospace Applications of Programmable Devices and Technologies, September 1999. 
R. P. Sidhu, A. Mei, and V. K. Prasanna, "Genetic Programming using Self-Reconfigurable FPGAs", International Workshop 
on Field Programmable Logic and Applications, September 1999. 
K. Bondalapati and V. K. Prasanna, "DRIVE: An Interpretive Simulation and Visualization Environment for Dynamically 
Reconfigurable Architectures", International Workshop on Field Programmable Logic and Applications, September 1999. 
K. Bondalapati and V. K. Prasanna, "Hardware Object Selection for Mapping Loops onto Reconfigurable Architectures". 
International Conference on Parallel and Distributed Processing Techniques and Applications, June 1999. 
K. Bondalapati and V. K. Prasanna, "Dynamic Precision Management for Loop Computations on Reconfigurable 
Architectures", IEEE Symposium on FPGAs for Custom Computing Machines. April 1999. 
A. Dandalis. A., and V. K. Prasanna. "Domain Specific Mapping for Solving Graph Problems on Reconfigurable Devices", 
Reconfigurable Architectures Workshop, April 1999. 
R. P. Sidhu. A. Mei. and V. K. Prasanna." String Matching on Multicontext FPGAs using Self-Reconfiguration", International 
Symposium on Field-Programmable Gate Arrays, February 1999. 
K. Bondalapati and V. K. Prasanna, "Mapping Signal Processing Loops onto Reconfigurable Hardware", High-Performance 
Embedded Computing Workshop, September 1998. 

14 

Research Accomplishments Summary 
MAARC 

11 K. Bondalapati and V. K. Prasanna." Mapping Loops onto Reconfigurable Architectures", International Workshop on Field 
Programmable Logic and Applications, September 1998. 

12 A. Dandalis and V. K. Prasanna, "Space-Efficient Mapping of 2D-DCT onto Dynamically Configurable Coarse-Grained 
Architectures'.lnternational Workshop on Field Programmable Logic and Applications, September 1998. 

13 A. Dandalis and V. K. Prasanna, "Mapping Homogeneous Computations onto Dynamically Configurable Coarse-Grained 
Architectures", IEEE Symposium on Field-Programming Custom Computing Machines, April 1998. 

14 S. Choi, Y. Chung and V. K. Prasanna. "Configurable Hardware for Symbolic Search Operations", International Conference 
on Parallel and Distributed Systems, December 1997. 

15 Y. Chung, S. Choi and V. K. Prasanna, "Parallel Object Recognition on an FPGA-based Configurable Computing Platform". 
International Workshop on Computer Architecture for Machine Perception. October 1997. 

16 A. Dandalis and V. K. Prasanna, "Fast parallel implementation of DFT using configurable devices", International Workshop on 
Field Programmable Logic and Applications, September 1997. 

17 K. Bondalapati and V. K. Prasanna." Reconfigurable Meshes: Theory and Practice", Reconfigurable Architectures Workshop. 
International Parallel Processing Symposium, April 1997. 

18 R. P. Sidhu, K. Bondalapati, S. Choi, and V. K. Prasanna." Computation Models for Reconfigurable Machines", International 

Symposium on Field-Programmable Gate Arrays. February 1997. 

http://maarc.usc.edu 
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Key Research Areas Summary - YR 3 
MAARC 

Problem-Instance Dependent Mapping 
- Reetinder Sidhu 

Dynamic Logic Synthesis for Reconfigurable HW 
- Andreas Dandalis 

HySAM Model and Dynamic Precision Management 
- Kiran Bondalapati 

An Interpretive Simulation and Visualization 
Environment for Dynamically Reconfigurable 
Architectures (DRIVE): Overview and Demo 
- Kiran Bondalapati 

16 

Problem-Instance Dependent Mapping 
MAARC 

Basic Approach 

Problem Instance 

© 
Configuration     THE 

Output 

Replace CAD tools with 
- Fast, efficient, problem specific 

algorithms implemented in 
software 

- Implement the algorithm itself in 
reconfigurable logic 

Problem 
Instance 

FPGA 

iguration 

Self-Reconfiguration 17 



Problem-Instance Dependent Mapping 
 MAARC 

3 orders of magnitude speedup in mapping time 
Order of magnitude speedup in overall execution 
time compared to a microprocessor 
implementation 
Successful validation of feasibility of our approach 
- Dynamic String Matching 

Text size n=104 

Pattern size m=8 

Approach TK+T„+Te Speedup 
Proposed 1.8 ms 1.0 
CAD tool mapping 76.0 s *105 

Software mapping 21.8 ms 12.1 
Sun Ultra 1 30.0 ms 16.6 

Overall Execution Time 

18 

g+           Dynamic Logic Synthesis for 
ÜF             Reconfigurable Hardware        MAARC 

Computation (e.g. Program) 

•   Application developer "sees" the                         I 
device and architectural features in                    ^ 
the algorithm design phase 

Off-line process 
Hybrid System 

Architecture Model 

i r    ^ ' 
Problem Instance 
(e.g. Input Data) 

Configurations 
and Schedule 

•   Runtime interaction between algorithm 

i '    i Run-time mapping r 
Intermediate 

Results 
Computation and 
Reconfiguration 

Result 
r 

19 



Dynamic Logic Synthesis for 
Reconfigurable Hardware       MAARC 

Case study: graph problems 
6 orders of magnitude speedup in overall 
execution time 
- compared with the state-of-the-art (MIT DCS) 

Order of magnitude speedup in overall execution 
time 
- compared with uniprocessor implementation 

20 

Dynamic Precision Management 
 MAARC 

Dynamic precision 

- Modify precision on the fly 

- Match implementation to algorithm requirements 

- Reconfigurable architectures can support dynamic precision 

Lower precision requires less resources 

- Logic area 

- Execution time 

- Power consumption 

Run-time precision management 

- dynamic modification 

- algorithmic optimization 
21 



Example: Mapping onto XC6200 
MAARC 

Mapping a multiply operation in a loop computation 

Algorithm Execution 
Time (ns) 

Reconfig. 
Time (ns) 

Total 
Time (ns) 

Raw 655360 20480 675840 

Static 532480 17920 550400 

Greedy 468010 56320 524330 

DPMA 471160 33280 504440 

DPMA-run 409600 15360 424960 

More than 30% improvement for one multiply operation 

22 

Interpretive Simulation Framework 
MAARC 

Architectures 

System 
Abstraction 

Library Modules 

Performance 
„Characterization/ 

Applications | 

Analysis and 
Transformatiorjy 

=*--r 
System 
Models 

Mapping 
Algorithms 

Task 
Models 

T 
Interpretive Simulation 

Performance Analysis 
„Design Exploration 

23 



Project Status 
MAARC 

Models 
- Reconfigurable Mesh, HySAM, RCSP 

Scalable Algorithms 
- Dynamic Precision Management, FFT, 2D-DCT, 

Geometric Hashing, Symbolic Search, String Matching, 
Genetic Programming, Graph Problems 

Compiler Optimization Techniques (NYU) 
- Adaptive-EPIC Architectures 

DRIVE Software 
- Interpretive Simulation and Visualization Environment 

for Dynamically Reconfigurable Architectures 

Completion by September 9 & 

Annual Review Outline 
MAARC 

USC Efforts 
- Project Overview 15' 
- Year 3 Key Technical Accomplishments 

• Problem-Instance Dependent Mapping (R.P.S. Sidhu) 20' 

• Dynamic Logic Synthesis for Reconfigurable HW (A. Dandalis) 20' 

Break 15' 

• HySAM Model and Dynamic Precision Management (K. Bondalapati) 30' 

• An Interpretive Simulation and Visualization Environment for Dynamically 
Reconfigurable Architectures (DRIVE): 
Overview and Demo (K. Bondalapati) 20' 

Break 15' 

NYU Efforts 60' 

Discussion 15' 
25 



MAARC 

Problem-Instance Dependent Mapping 

Student: Reetinder Sidhu 

Outline 
MAARC 

Motivation 

Algorithm 

Implementation 

Results 
Conclusion 

27 



Problem-Instance Dependent Logic 
MAARC 

FPGAs can outperform ASICs 
only if logic mapped onto them 
is optimized for each problem 
instance 

Problem r„ r„E T£ 

Satisfiability 2904 s 1-10 s 566 s 
Shortest path 14400 s 1-10 s 100 us 
Text filtering 0.16 s 3s 50 ms 

Problem Instance 

HOST 

Configuration 

FPGA       r» 

Output 

28 

No CAD tools at runtime 
MAARC 

CAD tools can be used to offline (compile time) to 
generate optimized logic 
No CAD tools at runtime 

29 



Replace CAD tools with what? 

HOST       T„ 

MAARC 

Fast, efficient, problem 
specific algorithms 
implemented in software     logic 

Problem Instance 

Implement the algorithm 
itself in reconfigurable 

Problem Instance 

FPGA 

uration     T*e 

Output 

30 

Outline 

Motivation 
Algorithm 
Implementation 
Results 
Conclusion 

MAARC 

31 



Proposed Approach: Parameterized 
Computation Structures (PCS)MAARC 

Parameters 
(Problem size, Precision) 

3   V1 

3   t^ 

■     ■    -           '   -   T-        T ■ 
**         *lrJ -j u 

FPGA 

32 

£ff                      KMP Algorithm 
MAARC 

• Problem: Find all occurrences of 
text T (length n) in pattern P (length ^IProblem Instance 

m) BMI HOST      r„ 

• KMP (Knuth, Morris, Pratt) FPGA 

algorithm searches in 0(m+n) time guratlon    T** 

- Phase 1: Construct FSM by looking at 
the pattern in O(m) time P&8 FPGA      rf 

- Phase II: Search text using FSM in 
O(n) time Output 

33 



KMP Algorithm 
MAARC 

Phase I (FSM construction) 

^R^^HSh^h® 

—*■ Char, match 

—► Char, mismatch 

"\ 

Pattern     a 
PatteriPattarPattarn     b      b 

babe 
ta       b       a        a 

match 

Phase I (Text search) 

Pattern 

Text 

®Ri^^HlHS)- -®-<e 
a        b 

a        b 

a b 

a        b 

a     match 

34 

Motivation 
Algorithm 
Implementation 
Results 
Conclusion 

Outline 
MAARC 

35 



£~             Implementation Approach 
**"                                                                                      MAARC 

•  Clock cycle level analysis of proposed multicontext FPGA 
implementation to obtain 1 

TM,TME and TE in terms of 

*clk Clock cycle time 

'cm Config. memory access time 

'em External memory access time 
m Pattern length 
n Text length 

• Implemented most logic on a Xilinx XC 6216 
to obtain above parameters 

36 

Implementation 

External 
Memory 

(T, P, n, m) 

Data Reg. 
Tp] 

MAARC 

Address 
Counter i 

^[Comparator char match. 

\ 

|    Context 0,1,2 

\~~\    Context 2 

ü    Context 3 

Backedge /— L 
Gonstructor \i—H 

slate zero] 

state Hi 

char match 

ins edge 

37 



FSM Template 
MAARC 

zero 

Pattern     a 

38 

zero 

Backedge Construction 
MAARC 

^•®^*®->®-*®-*® 
Pattern     a        b        a       b       c        a     mateh 

39 



OR-gate Insertion Logic 
MAARC 

L>Eh4K^4H^-tH^4Kih 

HI Encoder MM Add col. offsetHft, 

1 

K Add row offset« >A(13:8) 
XC6216 config. Memory format 

OR-gate address generation logic 

40 

Outline 
MAARC 

Motivation 
Algorithm 
Implementation 

Results 
Conclusion 

41 



Results 
MAARC 

Clock cycle level analysis 

Tu =(4m-2)fe, +(m + 1)fem + <Jm-4)tdk 

7"„E=Cn-1)s, or _ gate cm 

7-E = 2n- n 

m 
cctt 

42 

Results 
MAARC 

Implementation on XC6216 

t. t em      'elk 

*cm ~ *c//t 

= 3 'or_gate 

m *clk T„ TUE TE 
Total time 

4 81.6 ns 3.7 us 0.7 us 1428 us 1432 us 
8 97.6 ns 9.0 us 2.1 us 1830 us 1841 us 

16 129.6 ns 22.4 us 5.8 us 2511 us 2539 us 

Text size n=10 

43 



Performance Comparison 
(Mapping Time) MAARC 

CAD tool mapping 
- Place and route using XACT 6000 for each pattern 

Software mapping 
- KMP phase I in software 

Proposed approach 

Approach Ty T-« Tu+Tue Speedup 
Multicontext FPGA 9.0 us 2.1 us 11.1 US 1.0 
CAD tool mapping 76 s 1 ms 76 s -6x10A6 
Software mapping 20 ms 1 ms 21 ms 1892 

Pattern size m=8 

44 

Performance Comparison 
(Total Time) 

Approach Tu+TKe+TE Speedup 
Proposed 1.8 ms 1.0 
CAD tool mapping 76.0 s «105 

Software mapping 21.8 ms 12.1 
Sun Ultra 1 30.0 ms 16.6 

MAARC 

CAD tool mapping 
Software mapping 
Proposed approach 
Sun Ultra I Model 140 
- C implementation of KMP algorithm 

Text size n=104 

Pattern size m=8 

45 



£                           Outline 
^>                                                                                      MAARC 

• Motivation 

• Algorithm 
• Implementation 

• Results 
• Conclusion 

46 

K5                        Publications 
^                                                                                      MAARC 

• R. P. Sidhu, A. Mei, and V. K. Prasanna 
"Genetic Programming using Self-Reconfigurable FPGAs" 

• R. P. Sidhu, A. Mei, and V. K. Prasanna 
"String Matching on Multicontext FPGAs using Self- 
Reconfiguration" 

47 



Conclusion 
MAARC 

High mapping and reconfiguration times 
3 orders of magnitude speedup in mapping time 
Order of magnitude speedup in overall execution 
time compared to a microprocessor 
implementation 
Successful validation of approach feasibility 

48 

MAARC 

Dynamic Logic Synthesis for 
Reconfigurable Hardware 

Andreas Dandalis 



Outline 
MAARC 

Introduction 
- Dynamic Logic Synthesis for Reconfigurable Hardware 

Accomplishments (Year III) 
- Mapping Graph Problems 

- Example 
- Summary 

Conclusions 

50 

Computation Structures on FPGAs? 

i^^^^s^ 

Library-based modules 
configurations 
Problem 
- optimization across 

module boundaries 
- reconfiguration cost 

MAARC 

Library-based array 
configurations 

- well specified boundaries 

- less reconfiguration cost ? 

Problem 
- PEs computational power ? 
- space vs performance ? 

51 



Dynamic Logic Synthesis 

Problem 
Instance 

Dynamic 
Logic Synthesis 

- 
;•: Reconfigurable 

; DeviceSu' .; 
 - : 

MAARC 

52 

B Conventional Configuration Design 
MAARC 

Graph' 
Instance 

i r 
VHDL 
Veriloa 

not OK 
i 

Design       _ 
Validation 

1    OK 

Logic 
Synthesis 

1 
Partitioning 
Place/Route 

■ ' 
Analysis      _ 

(Areaffimincn 
not OK 

OK -■-■■■■■  ."I 
Device(s)    1 



7 Motivation: FPGA CAD Tools Bottleneck 
MAARC 

Single-Source Shortest Path Problem 
- MIT Dynamic Computation Structures 

• J. Babb, M. Frank, and A. Agarwal. "Solving Graph Problems 
with Dynamic Computation Structures", SPIE Nov. 1996. 

Execution Time (msec)          Mapping Time (msec) 

Hardware 
Software 

0.752                 0.6 *108 

40                                0 (executable) 

Speedup 52x 

54 

Performance Metrics 
MAARC 

Configuration 
Design 

Hardware 
Configuration 

Execution 

Graph 
Jnstance,, 

TM : time taken to design a configuration 

TME : time taken to configure the device(s) 

TE : time taken to execute on the device(s) 

55 



An Example: Single-Source Shortest 
Path Problem MAARC 

"Bellman-Ford" LOOP 
FOR k=l..n-1 

DO FOR each edge (i,j) 
DO l(j)* rain{l(j) , l(i)+w(i,j)} 

56 

An Example: Single-Source Shortest 
Path Problem MAARC 

l(i)*w(i,j) 

DCS 
mapping 

1 

w(i.j) 

0 1 ? n-1 
:: 

z 
l(j>.«-min{l(j),   l(i)+w(i,j)} 

I Our 
mapping 

57 



Skeleton 
MAARC 

w(i,j) 

l(i)+w(i,j) 

n-1 

l(j)4-min{l(j),l(i)+w(i,j) } 

Parameters 
- # of vertices n 
- data precision p 
- I/O bandwidth available S 

58 

Parameterized modules for XC6xxx 
MAARC 

Width 
- (p+Rog nl) 
Height 
-4p+2riogn>10 
Clock rate 
- 15 MHz 

• p=16, log n =16 

- 25 MHz 
• p=8, logn=16 

w(i.i: -Saß *-   M 

label 

u£ 

m< 
wfij) 

R 

Stop 

59 



C;      Placement and Routing for XC6xxx 
**                                                                                      MAARC 

• nacement               innn nn 
- pre-defined                        W,, „ „    „ „ r,     „              „     ^    ~ 

• Routing                             liil   11 
-.     ..                                                k 

- nearest neighbors             r nnn   nn 
T 

TTT  T7T TTT         rrr   m „ „       „ „ „ 

A   |:j   :;j   j;j           |ji    jj! 

T 

-■• ■• «...«.♦ii*<u.-.i->.«.« mil lifoi in 

60 

Run-time Adaptation 
MAARC 

Module-level 
- data precision 
- width of {i, j} buses 

Layout-level 
- # of modules 
- placement 

61 



Implementation 
MAARC 

Platform 
- Xilinx XC 6200 based 
- VCC HOT Works PCI board 

Tools 
- Velab VHDL compiler 
- XACT6000 (place-and-route) 

Area 
- the same as estimated 

Clock rate 
- 14MHz(p=16, logn=16) 
-23MHz(p= 8, logn=16) 

62 

Comparison with MIT DCS" 
MAARC 

Problem Clock Rate TF TM 
+ TME TE + TM + TME 

Size MHz Ltsec 

DCS      Our DCS Our DCS Our Speedup 

16 x   64 1.79     14 8.94 22.95 -   4h -  22 msec 6.5 x106 

64 x 256 1.14     14 56.14 84.66 -   4h -   82 msec 1.7 x106 

128x 515 0.78     14 164.10 213.98 -   8h - 161 msec 1.8 x106 

256x1140 0.34     14 752.94 528.39 -16h - 319 msec 1.8 x106 

"Solving graph problems with dynamic computation structures" J. Babb et al.. SPIE, Nov. 1996 63 



• 

Qualitative Comparison 
MAARC 

Our Mapping •    DCS Mapping 
- module-based - cell & wire-based 

• regular layout • irregular layout 

- incremental designs - complete redesign 

- area/timing estimates - area/timing estimates 

• determined by the • determined by "tools" 
computation structure 

- # of iterations - # of iterations 
• height of the shortest path • # of vertices 

tree - correct only for non-negative 
- negative cycle detection cycle graphs 

64 

Comparison with SW Implementation' 
MAARC 

1024 2048 

SUN ULTRA1 64MB/143MHZ 

n: # of vertices 
e: # of edges 
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Implementation on VIRTEX 
MAARC 

66 

Summary 
MAARC 

A. Dandalis, J. L Gaudiot, and V. K. Prasanna 
"Run-time Mapping of Graph-Problem Instances onto 
Reconfigurable Hardware" 

A. Dandalis, A. Mei, and V. K. Prasanna 
"Domain Specific Mapping for Solving Graph Problems on 
Reconfigurable Devices" 

A. Dandalis 
"Dynamic Logic Synthesis for Reconfigurable Hardware" 
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Conclusions 
MAARC 

Dynamic Logic Synthesis 
- unique way to "outperform" ASIC solutions 
- alleviates the FPGA CAD tools bottleneck 

Case-study: graph problems 
- 6 orders of magnitude speedup compared with the 

state-of-the-art 

68 

MAARC 

HySAM Model and 
Dynamic Precision Management 

Kiran Bondalapati 



Hybrid Architectures 
MAARC 

Hybrid 
Architectures 

Feasible architectures with the availability of nearly billion 
transistors on a chip 
Availability of on-chip configuration and data storage 
memory 
Potential for fast and dynamic reconfiguration 

70 

BRASS - Garp 
MAARC 

Reconfigurable array unit with a RISC 
processor 
Gate array of 32x24 logic blocks 
Partial configuration of gate array in row 
increments 
Configuration cache for fast 
reconfiguration 
4 cycles on-chip and 12 cycle off-chip 
reconfiguration time 

71 



Hybrid System Architecture Model 
MAARC 

Main 
Processor Memory 

Data Buffers 

Conf.'; 
Cache' Conf. Logic 

Untt(CLU) 

Parameterized model 

Architecture independent 
algorithm development 

Algorithmic analysis of 
mapping techniques 

72 

CLU Functions and Configurations 
MAARC 

Functions (F) 

- Computational units (e.g. Add, Multiply, Select) 

- Library Modules 

A Function can be executed by different Configurations 

Configurations (C) 

- Area, Configuration time, Execution time, Precision, Power consumption, I/O 
requirement 

tjj - execution time for function F| in configuration Cj 

Rjj - reconfiguration cost from C| to Cj 

- depends on both C, and C, 

- partial reconfiguration 

- reconfiguration cost matrix 
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Tasks and Configurations 

Input Application Tasks 
T, T2 T3 

Mapping 

Configurations 

AT 

Reconfiguration 

MAARC 

P 

m 

74 

£ Example : 
Garp Architecture Parameters    MAARC 

Function Operation Configuration Conf. □ 
Time ^Oj 

Exec. + 
Time   ü 

F, Multiplies tion(Fast) 

Multiplication(Slow) 

c, 
C2 

14.4 us 

6.4 us 

37.5 ns 

52.5 ns 

F2 
Addition c3 1.6 us 7.5 ns 

F3 
Subtraction c4 1.6 us 7.5 ns 

F4 
Shift c5 3.2 us 7.5 ns 
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££                         Example: 
f&       XC 6200 Multipier Configurations MAARC 

For the multiplier function F, 
Precision is bit-sizes of the two inputs to multiplier 

Configuration Cj Precision Pr(Cj) 
Conf.  p 
Time   ^0j 

Exec.  {.. 
Time    'J 

c, 8x8 5120 ns 140 ns 

c2 8x16 10240 ns 250 ns 

c3 8x20 12800 ns 300 ns 

c4 8x24 15360 ns 400 ns 

c5 
8x28 17920 ns 520 ns 

c6 8x32 20480 ns 640 ns 
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jR                            Outline 
MAARC 

• Introduction 
• HySAM Model 
• Variable Precision Computations 
• Dynamic Precision Management 

• Example Results 
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JK Precision Variation in Loop Computations 
£*"                                                                                      MAARC 

Ex:     DO 10 1=1,N 
DC   2 0   J=1,N 

RSQ(J)    =   RSQ(J)+XDIFF(I,J)*YDIFF(I,J) 

2 C               IF    (MAXQ.LT.RSQ(J) )    THEN 

MAXQ   =   RSQ(J) 
10         VIP.TXY   =   VIRTXY   +   MAXQ   *   SCALE (I) 

•   8-bit inputs XDIFF(I.J) and YDIFF(U) 
♦   MAXQ operand and * operation 

- precision changes with iterations of I 
- lower than maximum possible precision (for most iterations) 

78 

Variable Precision Computations 
MAARC 

Precision requirement is lower than implemented 

Match implementation to algorithm requirements 

Less resources 
- Logic area 

- Execution time 

- Power consumption 

Run-time precision management 

- dynamic modification 
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Dynamic Precision Management 
MAARC 

Precision variation analysis 
- Loop computations 
- Theoretical analysis 
- Run-time analysis 
- precision variation curve 

Utilize variable precision library 

Dynamic Precision Management Algorithm 

Optimal configuration sequence 
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? Precision Variation in Loop Computations 
" MAARC 

Ex:  DO 10 1=1,N 
DO 20 J=1,N 

RSQ(J) = RSQ(J)+XDIFF(I,J)*YDIFF(I,J) 
20      IF (MAXQ.LT.RSQ(J)) THEN 

MAXQ = RSQ(u) 
10   VIRTXY = VIRTXY + MAXQ * SCALE(I) 

MAXQ operand and * operation 
- precision changes with iterations of I 
- lower than maximum possible precision (for most iterations) 

Does not change every iteration 
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Precision Variation Curve(PVC) 
for Loops MAARC 

• Precision Variation Curve 
- Change in required precision of an operand or an operation over the 

given iteration space 

• PVC Points 
- Iterations in which precision changes 

- Subset of iteration space of loop 

• Definition 
- <L„P,>   1</<u+1,Lu+1 = /V 

- ^ is the minimum precision required to execute iterations Lj... Li+1 -1 

- N = number of iterations 

82 

fs Precision Variation Curve 
MAARC 

Precision Variation Curve 

— 10 • 

§  •    8" 
.2 o    - o -o    6 

!5 
~—    2 - 

r^ 
r^ -PVC 

r-1 
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r^ 
X 

f ^     co     to     in      h»      in     M      i- 
^     o      oo      o>     ^      o» 

T-        n         00 

Iteration Number 



Theoretical Analysis 
MAARC 

Precision of a variable 
- precision of the variable before loop 
- operations performed on the variable 

- number of iterations 

Accumulation of constant C  X = X + C 
- X initial value 0 
- Addition operation 

- N iterations 

Pr(X) < Pr(C) + log N+1 
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Theoretical Analysis Limitations 
 MAARC 

Theoretical analysis is conservative 
- worst case upper bound for minimum precision required 

- not always a tight upper bound 

- based on worst case input values 

- Ex: Fibonacci numbers PiiX^5) 

• theoretical precision = 14 bits 

• actual X15 = 610, precision = 10 bits 

85 



Run-time Analysis 
MAARC 

Run-time profiling 
- Precision analysis 
- Instrumented code 
- Simulations with typical data sets 
- Measure precision in all iterations 
- Estimate required precision 

Execution 
- Use estimated precision values 
- run-time verification 

• low cost precision check 
• check not in critical path 
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Precision Variation Curve 
MAARC 
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Precision Management Problem 
MAARC 

Given 
- PVC for a given operation in the loop 

Find 
- A valid optimal schedule which minimizes total execution 

time 

Valid schedule 
- satisfies the precision requirements of the computation 

Total execution time 
- execution time + reconfiguration time 
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Precision Management Problem 
MAARC 

Valid schedule for a given PVC 
- For every iteration K(1 £ K^N) the precision of scheduled configuration 

is less than the required precision given by the PVC 

Scheduled 

Precision 

Given PVC 

1 K 
Iteration Number 

N 
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Assumptions 
MAARC 

Higher precision requires more resources 
- execution time 
- logic area 

Monotonie variation in precision 
- several image processing and signal processing 

applications 
- split non-monotonic PVC into monotonic 

subsequences 

Optimal solution for the given PVC 
- near optimal if actual precision variation is different 

90 

Dynamic Precision Management 
Algorithm (DPMA) MAARC 

Lemma: The reconfiguration points are a subset of the 

PVC points 

Greedy algorithm 

- best configuration for each PVC interval 
- sub-optimal schedule 

DPMA algorithm 
- Dynamic programming based 
- Explores non-optimal configurations 

• for some iterations 
• reduces reconfiguration overhead 

- 0(um2) complexity 
• u = # of PVC points, m = # of configurations 

91 



£*                         Example : 
W       XC 6200 Multipier Configurations MAARC 

For the multiplier function F; 
Precision is bit-sizes of the two inputs to multiplier 

Configuration Cj Precision Pi\C) Conf.  p 
Time   R0j 

Exec.  {.. 
Time    'i 

c, 8x8 5120 ns 140 ns 

c2 8x16 10240 ns 250 ns 

c3 8x20 12800 ns 300 ns 

c4 8x24 15360 ns 400 ns 

c5 
8x28 17920 ns 520 ns 

c6 8x32 20480 ns 640 ns 

92 

Results: Ad-hoc approaches 
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Results: DPMA Approach 
MAARC 

Precision Variation Curve 
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Results: DPMA Run-time Approach 
MAARC 

Precision Variation Curve 
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Example: Mapping onto XC6200 
MAARC 

Mapping the multiplier operation in MAXQ * SCALE (i) 

Algorithm Execution 
Time (ns) 

Reconfig. 
Time (ns) 

Total 
Time (ns) 

Raw 655360 20480 675840 

Static 532480 17920 550400 

Greedy 468010 56320 524330 

DPMA 471160 33280 504440 

DPMA-run 409600 15360 424960 

Raw - 8x32 precision for all iterations 

Static - 8x28 precision for all iterations 
Greedy - schedule using greedy algorithm 
DPMA - schedule using theoretical PVC 

DPMA-run - schedule using run-time PVC 
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Publications 
MAARC 

K. Bondalapati, G. Papavassilopoulos and V. K. Prasanna 

"Mapping Applications onto Reconfigurable Architectures using Dynamic Programming" 

Military and Aerospace Applications of Programmable Devices and Technologies, Sept 1999. 

K. Bondalapati, V. K. Prasanna and P. loannou 
"Managing Dynamic Precision on Reconfigurable Hardware" 

High Performance Embedded Computing Workshop, Sept 1999. (Poster) 

K. Bondalapati and V. K. Prasanna 
"Hardware Object Selection for Mapping Loops onto Reconfigurable Architectures" 

Parallel and Distributed Processing Techniques and Applications, June 1999. 

K. Bondalapati and V. K. Prasanna 
"Dynamic Precision Management for Loop Computations on Reconfigurable 
Architectures" 
FPGAs for Custom Computing Machines (FCCM), April 1999. 

(Collaboration with ISIDEFACTO) 
"DEFACTO: A Design Environment for Adaptive Computing Technology" 

Reconfigurable Architectures Workshop 1999, April 1999 
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Dynamic Precision Management 
 MAARC 

Precision variation in loop computation 
Run-time adaptation of configurable hardware 
Efficient dynamic precision management algorithm 
Potential for speeding-up large class of 
applications 
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MAARC 

DRIVE 

An Interpretive Simulation and Visualization 
Environment for Dynamically Reconfigurable Systems 

Kiran Bondalapati 



Traditional Design Approach 
MAARC 

Application 
Developer ]H VHDL 

Veriloa 

. Technology 
i Independent 

High-level 
Synthesis 

RT/gate-level | 
Network     I 

Analysis 
(Area^ming) 

ÖK"" 

Jriij)t tOK 

Technology 
Dependent 

Devices 
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Simulation Tools 
MAARC 

Performance Analysis 
- execution time, memory access, power,... 

Algorithmic Analysis 
- various mapping and scheduling algorithms 

Architectural Exploration 
- device and architectural alternatives 

101 



EDA Simulation Tools 
MAARC 

Simulation of VHDL designs 
- high level behavioral simulation 

- verifies correctness 
- does not provide performance characteristics 

Simulation of netlist/placed and routed design 
- low level timing simulation 
- fixed to specific implementation on specific device 
- needs final design for each alternative device/algorithm 

m^  Application developer needs to understand low level 
device and architecture details 
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DRIVE Goals 
MAARC 

High level performance analysis 
- based on module level performance characterization 

Architecture abstraction 
- insulate application developer from hardware intricacies 

Algorithm analysis 
- extensible tools to study various algorithmic techniques 

Architecture exploration 
- parameterized architectural model for exploration 
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Related Work 
MAARC 

Dynamic Circuit Switching, Lysaght et. al. 
- Integrate VHDL modules for dynamic reconfiguration by 

using multiplexers for inputs and outputs 

CHASTE, Brebner et. al. 
- Low level simulation tool for a specific FPGA(XC6200) 

JHDL, BOOM, JBits etc. 
- Languages and libraries for CAD with simulation 

embedded into the framework 

104 

Interpretive Simulation Framework 
MAARC 

Architectures 

System 
Abstraction_ 

Library Modules 

Performance 
Characterization 

Applications j 

Analysis and 
.Transformation 

System 
Models 

Mapping 
Algorithms 

Task 
Models 

T 
Interpretive Simulation 

Performance Analysis 
^Design Exploratioiv. 
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Simulate the application model on the system model 

Performance is based on module characterization 

Advantages 
- Exploits the design methodology 
- Elimination of actual execution 
- Interactive and real-time simulation 

Disadvantages 
- Analysis only as accurate as module analysis 

- Approximates module interactions 
106 

Capabilities vs. Implementations 
 MAARC 

Application is transformed to capabilities 
- Application tasks are Functions 

Implementations transparent to user 
- Application does not need to know configurations 

Algorithmic techniques for mapping 
- Capabilities are mapped to implementations 
- Functions are mapped to Configurations 

Facilitates Drag-n-Drop construction of applications 

107 



Drive Components 
MAARC 

I^JSER 

Visualizer 

Date 
Simulator 

Core 
System State 

Applications] Scheduler 
HySAM 
Model 

Architectures! 
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Simulator Core 
MAARC 

Execution of functions 
- by dynamic loading of Java classes 
- Java class specified in input for each configuration 

Uniform interface to dynamic Java classes 
- data input and output as Strings 
- internal data type conversion 

Storage of intermediate results 
- for data dependent scheduling 

Easy integration of libraries 
- BOOM, JHDL, etc. Java classes can be utilized 
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Scheduler Component 
MAARC 

• Event based scheduler 
- execution, reconfiguration, memory events 

• Dynamic scheduling 
- events accessed dynamically from the scheduler 

component 

• Schedules the simulator core operations 
• Scheduling algorithms 

- implements current algorithms 
- easy extensibility to add new algorithms 
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Application Input Format 
MAARC 

Task Specification 
tasktt typejd  <condition>  functionjd  <function parameters* 

1: function 
2: conditional 
3: do loop 
4: conditional loop 

Parameters such asA 
#inputs 
precision required 

Dependency Specification 

in 



System State Component 
MAARC 

Status of various components of the system 
CLU configuration information 
Configuration cache status 
Memory access information 

112 

Visualizer 
MAARC 

Human Computer Interface to the simulator 
Java based GUI and components 
Independent of other components 
Performance analysis data 

113 



Publications 
 MAARC 

K. Bondalapati and V. K. Prasanna 

"DRIVE: An Interpretive Simulation and Visualization Environment for Dynamically 
Reconfigurable Systems" 

Int. Workshop on Field Programmable Logic and Applications, Aug-Sept 1999. 

114 

DRIVE Summary 
 MAARC 

Exploits the design methodology 
Interactive and real-time interpretive simulation 

Analysis of architectural parameters 
- Reconfiguration costs (partial and dynamic) 

- Configuration caches etc. 

Performance analysis of mapping algorithms 
Facilitates application mapping and performance 
estimation 
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Sidhu's Contribution 
MAARC 

Higher performance through reconfigurable 
computing than custom VLSI 
Problem instance dependent mapping 
String matching (KMP) algorithm 
- Order of magnitude speedup in overall execution 

time 
- 3 orders of magnitude speedup in mapping time 

(software) 
- 6 orders of magnitude speedup in mapping time 

(self-reconfigurable device) 

1 to 3 orders of magnitude speedup in overal 
execution time for Genetic Programming 
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Impact 
MAARC 

Sanders 
JPL 
Encouraging feedback from the community 
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Andreas' Contribution 
MAARC 

Mapping based on algorithmic design 
- new performance metric 

• scalability & partitionability 

-FFT 
• 2-8 times faster than the "Fastest FFT in the West" (1997) 

- Matrix Operations 
• 50% memory savings compared to the state-of-the-art 

Run-time mapping 
- new performance metric 

• mapping time is critical 
• predictable performance is essential 

- case study: graph problems 
• 106 speed-up compared to the state-of-the-art m 

Advance state-of-the-art 
- RAW (MIT) 
- RAPID (Univ. of Washington) 

Provide evidence to the community about the 
necessity of 
- scalable and partitioned solutions 
- new performance metric for run-time mapping 

Preliminary development of efficient techniques for 
run-time mapping 
- expected speed-up: 2-6 orders of magnitude compared to 

the state-of-the-art 
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Kiran's Contribution 
MAARC 

• HySAM: Hybrid System Architecture Model of 
reconfigurable architectures 

• Mapping of application loops onto configurable 
architectures 

• Dynamic precision management to exploit run- 
time reconfiguration 

• DRIVE: Module based interpretive simulation 
framework 
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Part II 

NYU Efforts 

1     Summary of Accomplishments 

This effort was focused towards developing a model consistent with the constraints of adap- 

tive hardware on the one hand, and the need to compile and optimize applications developed 

to execute them on the other. The primary technical goals for the NYU portion of the sub- 

contract were: 

• Develop a model that can serve as a target for the compiler. 

• Innovate the framework of an optimizing compiler to target the adaptive processor 

model. 

• Achieve fast compilation times. 

• Develop and validate instruction scheduling optimizations as a proof-of-concept that 

the compilation framework can be used in the context of the paticular model developed 

as part of this effort. 

• Develop language support techniques that can serve as a basis for interactive specifi- 

catoin of partititioning and mapping. 

1.1 Model for Compilation onto Adaptive Systems 

The initial proposal for a Reduced Configuration Space Processor developed and presented 

in 1997 served as the basis for the final model which is referred to as the Adaptive EPIC or 

A-EPIC architecture. The A-EPIC architecture is parametric and achieves the stated goals 

in the following sense. It provides an abstract representation of adaptive logic that can used 

as a basis for compilation. Experimental validation (sketched below) has demonstranted 

the feasibility of using the model to help achieve speedups for challenge applications. A 

novel feature of an A-EPIC class processor is the ability to use features in the EPIC core 

notably speculation to help prefetch configurations, and thus reduce configuration switching 

times with the intent of supporting dynamic configurability. Another interesting feature is 

an adaptive configuration cache also intended to help with dynamic switching times. 

1.2 Compilation Framework 

The framework for compilation utilizes interactive partitioning and mapping techniques, 

that the programmer is intended to specify to the compiler front-end. In this context, the 



application is divided into a portion that is meant to be executed on the EPIC core (part of 

the A-EPIC) which is typically the control skeleton part of the computation. The compute 

intensive kernels—identified via profiling, for example, the IDCT kernel in the context 

of MPEG2—are executed on the adaptive part of the processor. Scheduling and related 

compiler optimizations will help optimize the issuing of such "adaptive instructions". 

1.3    Compilation Techniques 

Instruction scheduling algorithms have been developed, and when tractable, proven to be 

optimum within the context of the A-EPIC framework. A language-independent notation 

TimeC has been developed for specifying time-constraints in applications. The goal of this 

notation is to specify time constraints in a base language such as C or C+-1- using TimeC. 

The structure of this notation in terms of its language independent aspects is applicable 

to be applicable in the partitioning and mapping contexts as well. Speedups for challenge 

applications in the range of 5-35 have been obtained within the context of the A-EPIC 

model and the compilation framework innovated here. 
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